Skip to main content
Erschienen in: Journal of Engineering Thermophysics 4/2021

01.10.2021

Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices

verfasst von: A. N. Pavlenko, D. V. Kuznetsov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents a brief analysis of current achievements and key issues in the field of heat transfer and critical heat flux enhancement during boiling of cryogenic liquids and freons under various heat release laws via micro-structuring of the heat-generating surface. A review of new experimental data on the efficiency of heat transfer and critical heat flux enhancement during pool boiling via new micro-structured capillary-porous coatings created by plasma sputtering and selective laser melting/sintering (3D printing) is presented. The results of analysis of the efficiency of heat transfer and critical heat flux during boiling on heat-generating surfaces with micro-textures of different shapes and micro-profiling created by micro-deforming cutting are presented. New results obtained during nitrogen boiling under various hydrodynamical conditions on the mechanisms of sharp increase in the rate of non-stationary cooling of plates with new structured capillary-porous or low-heat-conductivity coatings with certain parameters are discussed. New results on the degree of heat transfer enhancement during boiling of liquids on micro-structured surfaces modified by the method of micro-arc oxidation are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grigoriev, V.A., Pavlov, Yu.M., and Ametistov, E.V., Kipenie kriogennykh zhidkostei (Boiling of Cryogenic Liquids), Moscow: Energiya, 1977. Grigoriev, V.A., Pavlov, Yu.M., and Ametistov, E.V., Kipenie kriogennykh zhidkostei (Boiling of Cryogenic Liquids), Moscow: Energiya, 1977.
2.
Zurück zum Zitat Kirichenko, Yu.A. and Rusanov, K.V., Teploobmen v gelii-I v usloviyakh svobodnogo dvizheniya (Heat Transfer in Helium-I under Conditions of Free Movement), Kiev: Naukova dumka, 1983. Kirichenko, Yu.A. and Rusanov, K.V., Teploobmen v gelii-I v usloviyakh svobodnogo dvizheniya (Heat Transfer in Helium-I under Conditions of Free Movement), Kiev: Naukova dumka, 1983.
3.
Zurück zum Zitat Belyakov, V.P., Kriogennaya tekhnika i tekhnologiya (Cryogenic Engineering and Technology), Moscow: Energoizdat, 1982. Belyakov, V.P., Kriogennaya tekhnika i tekhnologiya (Cryogenic Engineering and Technology), Moscow: Energoizdat, 1982.
4.
Zurück zum Zitat Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii kriogennykh zhidkostei (Heat Transfer during Boiling of Cryogenic Liquids), Kiev: Naukova dumka, 1987. Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii kriogennykh zhidkostei (Heat Transfer during Boiling of Cryogenic Liquids), Kiev: Naukova dumka, 1987.
5.
Zurück zum Zitat Arkharov, A.M., Belyakov, V.P., and Mikulin, E.I., Kriogennye systemy (Cryogenic Systems), Moscow: Mashinostroenie, 1987. Arkharov, A.M., Belyakov, V.P., and Mikulin, E.I., Kriogennye systemy (Cryogenic Systems), Moscow: Mashinostroenie, 1987.
6.
Zurück zum Zitat Barron, R.F., Cryogenic Systems, New York: Oxford University Press, 1989. Barron, R.F., Cryogenic Systems, New York: Oxford University Press, 1989.
7.
Zurück zum Zitat Miropol’skii, Z.L., Eroshenko, V.M., and Filimonov, S.S., Gidrodinamika i teploobmen v sverkhprovodnikovykh ustroistvakh (Hydrodynamics and Heat Transfer in Superconducting Devices), Moscow: Nauka, 1990. Miropol’skii, Z.L., Eroshenko, V.M., and Filimonov, S.S., Gidrodinamika i teploobmen v sverkhprovodnikovykh ustroistvakh (Hydrodynamics and Heat Transfer in Superconducting Devices), Moscow: Nauka, 1990.
8.
Zurück zum Zitat Chato, J.C., Cryogenic Heat Transfer a Survey of Recent Developments, in Applications of Cryogenic Technology. Applications of Cryogenic Technology, vol. 10, Kelley, J.P., Ed., Boston, MA: Springer, pp. 139–161, 1991; doi.org/10.1007/978-1-4757-9232-4_12. Chato, J.C., Cryogenic Heat Transfer a Survey of Recent Developments, in Applications of Cryogenic Technology. Applications of Cryogenic Technology, vol. 10, Kelley, J.P., Ed., Boston, MA: Springer, pp. 139–161, 1991; doi.org/10.1007/978-1-4757-9232-4_12.
9.
Zurück zum Zitat Altov, V.A., Zenkevich, V.B., Kremlev, M.G., and Sychev, V.V., Stabilizatsiya sverkhprovodyaschikh magnitnykh system (Stabilization of Superconducting Magnetic Systems), Moscow: Energoatomizdat, 1984. Altov, V.A., Zenkevich, V.B., Kremlev, M.G., and Sychev, V.V., Stabilizatsiya sverkhprovodyaschikh magnitnykh system (Stabilization of Superconducting Magnetic Systems), Moscow: Energoatomizdat, 1984.
10.
Zurück zum Zitat Gurevich, A.V., Mints, R.G., and Rakhmanov, A.L., Fizika kompozitnykh sverkhpovodnikov (Physics of Composite Superconductors), Moscow: Nauka, 1987. Gurevich, A.V., Mints, R.G., and Rakhmanov, A.L., Fizika kompozitnykh sverkhpovodnikov (Physics of Composite Superconductors), Moscow: Nauka, 1987.
11.
Zurück zum Zitat Glebov, I.A., Shakhtarin, V.N., and Antonov, Yu.F., Problema vvoda toka v sverkhprovodnikovye ustroistva (The Problem of Current Input into Superconducting Devices), Leningrad: Nauka, 1985. Glebov, I.A., Shakhtarin, V.N., and Antonov, Yu.F., Problema vvoda toka v sverkhprovodnikovye ustroistva (The Problem of Current Input into Superconducting Devices), Leningrad: Nauka, 1985.
12.
Zurück zum Zitat Kirichenko, Yu.A., Kozlov, S.M., Rusanov, K.V., Seregin, V.E., Troyanov, O.M., and Tyurina, E.G., Teploobmen pri kipenii azota i voprosy okhlazhdeniya vysokotemperaturnykh sverkhprovodnikov (Heat Transfer at Nitrogen Boiling and Issues of Cooling of High-Temperature Superconductors), Kiev: Naukova dumka, 1992. Kirichenko, Yu.A., Kozlov, S.M., Rusanov, K.V., Seregin, V.E., Troyanov, O.M., and Tyurina, E.G., Teploobmen pri kipenii azota i voprosy okhlazhdeniya vysokotemperaturnykh sverkhprovodnikov (Heat Transfer at Nitrogen Boiling and Issues of Cooling of High-Temperature Superconductors), Kiev: Naukova dumka, 1992.
13.
Zurück zum Zitat Klimenko, V.V. and Sudarchikov, A.M., Investigation of Forced Flow Boiling of Nitrogen in a Long Vertical Tube, Cryogenics, 1983, vol. 23, no. 7, pp. 379–385; DOI: 10.1016/0011-2275(83)90092-9.ADSCrossRef Klimenko, V.V. and Sudarchikov, A.M., Investigation of Forced Flow Boiling of Nitrogen in a Long Vertical Tube, Cryogenics, 1983, vol. 23, no. 7, pp. 379–385; DOI: 10.1016/0011-2275(83)90092-9.ADSCrossRef
14.
Zurück zum Zitat Sudarchikov, A.M., Hydrodynamic Instability in a Boiling Nitrogen Flow, Vestnik MEI, 2005, vol. 4, pp. 33–39. Sudarchikov, A.M., Hydrodynamic Instability in a Boiling Nitrogen Flow, Vestnik MEI, 2005, vol. 4, pp. 33–39.
15.
Zurück zum Zitat Sudarchikov, A.M., Unstable Flow Regimes during Boiling in a Channel: Occurrence, Characteristics, Influence on Heat Transfer and Crisis, Doctoral (Eng.) Dissertation, Moscow, 2007, p. 320. Sudarchikov, A.M., Unstable Flow Regimes during Boiling in a Channel: Occurrence, Characteristics, Influence on Heat Transfer and Crisis, Doctoral (Eng.) Dissertation, Moscow, 2007, p. 320.
16.
Zurück zum Zitat Fujikura HTS Wire Properties; http://www.fujikura.co.jp/eng/products/newbusiness/superconductors/ 01/2050256_12808.html. Fujikura HTS Wire Properties; http://​www.​fujikura.​co.​jp/​eng/​products/​newbusiness/​superconductors/​ 01/2050256_12808.html.
17.
Zurück zum Zitat Statra, Y., Menana, H., Belguerras, L., and Douine, B., A Volume Integral Approach for the Modelling and Design of HTS Coils, Int. J. Comput. Math. Electr. Electron. Eng., 2019, vol. 38, no. 4, pp. 1133–1140.CrossRef Statra, Y., Menana, H., Belguerras, L., and Douine, B., A Volume Integral Approach for the Modelling and Design of HTS Coils, Int. J. Comput. Math. Electr. Electron. Eng., 2019, vol. 38, no. 4, pp. 1133–1140.CrossRef
18.
Zurück zum Zitat Haran, K.S., Kalsi, S., Arndt, T., Karmaker, H., Badcock, R., Buckley, B., Haugan, T., Izumi, M., Loder, D., Bray, J.W., Masson, P., and Stautner, E.W., High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap, Supercond. Sci. Technol., 2017, vol. 30, no. 12, p. 41; doi.org/10.1088/1361-6668/aa833e.CrossRef Haran, K.S., Kalsi, S., Arndt, T., Karmaker, H., Badcock, R., Buckley, B., Haugan, T., Izumi, M., Loder, D., Bray, J.W., Masson, P., and Stautner, E.W., High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap, Supercond. Sci. Technol., 2017, vol. 30, no. 12, p. 41; doi.org/10.1088/1361-6668/aa833e.CrossRef
19.
Zurück zum Zitat Dezhin, D., Ilyasov, R., Kozub, S., Kovalev, K., and Verzhbitsky, L., Synchronous Motor with HTS-2G Wires, J. Phys. Conf. Ser., 2014, vol. 507, no. 3, p. 032011. Dezhin, D., Ilyasov, R., Kozub, S., Kovalev, K., and Verzhbitsky, L., Synchronous Motor with HTS-2G Wires, J. Phys. Conf. Ser., 2014, vol. 507, no. 3, p. 032011.
20.
Zurück zum Zitat Kovalev, K., Kovalev, L., Poltavets, V., Samsonovich, S., Ilyasov, R., Levin, A., and Surin, M., Synchronous Generator with HTS-2G Field Coils for Windmills with Output Power 1 MW, J. Phys. Conf. Ser., 2014, vol. 507, no. 3, p. 032023; DOI: 10.1088/1742-6596/507/3/032023. Kovalev, K., Kovalev, L., Poltavets, V., Samsonovich, S., Ilyasov, R., Levin, A., and Surin, M., Synchronous Generator with HTS-2G Field Coils for Windmills with Output Power 1 MW, J. Phys. Conf. Ser., 2014, vol. 507, no. 3, p. 032023; DOI: 10.1088/1742-6596/507/3/032023.
21.
Zurück zum Zitat Dezhin, D., Ivanov, N., Kovalev, K., Kobzeva, I., and Semenihin, V., System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, IEEE Trans. Appl. Supercond., 2018, vol. 28, no. 4, pp. 1–5, p. 5201905; DOI: 10.1109/TASC.2017.2787180.CrossRef Dezhin, D., Ivanov, N., Kovalev, K., Kobzeva, I., and Semenihin, V., System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, IEEE Trans. Appl. Supercond., 2018, vol. 28, no. 4, pp. 1–5, p. 5201905; DOI: 10.1109/TASC.2017.2787180.CrossRef
22.
Zurück zum Zitat Kovalev, K.L., Penkin, V.T., Larionov, A.E., Modestov, K.A., Ivanov, N.S., Tulinova, E.E., Dubensky, A.A., Verzhbitsky, L.G., and Kozub, S.S., Brushless Superconducting Synchronous Generator with Claw-Shaped Poles and Permanent Magnets, IEEE Trans. Appl. Supercond., 2016, vol. 26, no. 3, p. 7405291.CrossRef Kovalev, K.L., Penkin, V.T., Larionov, A.E., Modestov, K.A., Ivanov, N.S., Tulinova, E.E., Dubensky, A.A., Verzhbitsky, L.G., and Kozub, S.S., Brushless Superconducting Synchronous Generator with Claw-Shaped Poles and Permanent Magnets, IEEE Trans. Appl. Supercond., 2016, vol. 26, no. 3, p. 7405291.CrossRef
23.
Zurück zum Zitat Kovalev, K., Ivanov, N., Zhuravlev, S., Nekrasova, J., Rusanov, D., and Kuznetsov, G., Development and Testing of 10 kW Fully HTS Generator, J. Phys.: Conf. Ser., 2020, vol. 1559, p. 012137; DOI: 10.1088/1742-6596/1559/1/012137.CrossRef Kovalev, K., Ivanov, N., Zhuravlev, S., Nekrasova, J., Rusanov, D., and Kuznetsov, G., Development and Testing of 10 kW Fully HTS Generator, J. Phys.: Conf. Ser., 2020, vol. 1559, p. 012137; DOI: 10.1088/1742-6596/1559/1/012137.CrossRef
24.
Zurück zum Zitat Zhuravlev, S., Zechikhin, B., Ivanov, N., and Nekrasova, J., Analytical Calculation of the Magnetic Field in Electrical Machines with HTS Excitation and Armature Windings, Mater. Res. Express, 2019, vol. 6, no. 7, p. 076001; doi.org/10.1088/2053-1591/ab18be.ADSCrossRef Zhuravlev, S., Zechikhin, B., Ivanov, N., and Nekrasova, J., Analytical Calculation of the Magnetic Field in Electrical Machines with HTS Excitation and Armature Windings, Mater. Res. Express, 2019, vol. 6, no. 7, p. 076001; doi.org/10.1088/2053-1591/ab18be.ADSCrossRef
25.
Zurück zum Zitat Dezhin, D., Ivanov, N., Kovalev, K., Kobzeva, I., and Semenihin, V., System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, IEEE Trans. Appl. Supercond., 2018, vol. 28, no. 4, p. 8239830; DOI: 10.1109/TASC.2017.2787180.CrossRef Dezhin, D., Ivanov, N., Kovalev, K., Kobzeva, I., and Semenihin, V., System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, IEEE Trans. Appl. Supercond., 2018, vol. 28, no. 4, p. 8239830; DOI: 10.1109/TASC.2017.2787180.CrossRef
26.
Zurück zum Zitat Surtaev, A.S., Serdyukov, V.S, and Pavlenko, A.N., Nanotechnologies for Thermophysics: Heat Transfer and Crisis Phenomena at Boiling, Nanotechnol. Russia, 2016, vol. 11, pp. 696–715; doi.org/10.1134/ S1995078016060197.CrossRef Surtaev, A.S., Serdyukov, V.S, and Pavlenko, A.N., Nanotechnologies for Thermophysics: Heat Transfer and Crisis Phenomena at Boiling, Nanotechnol. Russia, 2016, vol. 11, pp. 696–715; doi.org/10.1134/ S1995078016060197.CrossRef
27.
Zurück zum Zitat Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, no. 66, pp. 173–196; doi.org/10.1016/j.expthermflusci.2015.03.023.CrossRef Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, no. 66, pp. 173–196; doi.org/10.1016/j.expthermflusci.2015.03.023.CrossRef
28.
Zurück zum Zitat Ahn, H.S. and Kim, M.H., A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification, J. Heat Transfer, 2012, vol. 134, no. 2, pp. 024001-1–024001-13; DOI: 10.1115/1.4005065.CrossRef Ahn, H.S. and Kim, M.H., A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification, J. Heat Transfer, 2012, vol. 134, no. 2, pp. 024001-1–024001-13; DOI: 10.1115/1.4005065.CrossRef
29.
Zurück zum Zitat Shojaeian, M. and Kosar, A., Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 63, pp. 45–73; DOI: 10.1016/j.expthermflusci.2014.12.016.CrossRef Shojaeian, M. and Kosar, A., Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 63, pp. 45–73; DOI: 10.1016/j.expthermflusci.2014.12.016.CrossRef
30.
Zurück zum Zitat Moria, S. and Utaka, Y., Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2534–2557; doi.org/10.1016/ j.ijheatmasstransfer.2017.01.090.CrossRef Moria, S. and Utaka, Y., Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2534–2557; doi.org/10.1016/ j.ijheatmasstransfer.2017.01.090.CrossRef
31.
Zurück zum Zitat Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.ADSCrossRef Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.ADSCrossRef
32.
Zurück zum Zitat Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.CrossRef Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.CrossRef
33.
Zurück zum Zitat Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.CrossRef Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.CrossRef
34.
Zurück zum Zitat Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.-C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. J. Heat Mass Transfer, 2020, vol. 119, no. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950. Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.-C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. J. Heat Mass Transfer, 2020, vol. 119, no. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.
35.
Zurück zum Zitat Liang, G.I. and Mudawar, I., Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes, Int. J. Heat Mass Transfer, 2020, vol. 146, no. 118864; doi.org/10.1016/j.ijheatmasstransfer.2019.118864.CrossRef Liang, G.I. and Mudawar, I., Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes, Int. J. Heat Mass Transfer, 2020, vol. 146, no. 118864; doi.org/10.1016/j.ijheatmasstransfer.2019.118864.CrossRef
36.
Zurück zum Zitat Zing, C., Mahjoob, S., and Vafai, K., Analysis of Porous Filled Heat Exchangers for Electronic Cooling, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 268–276; doi.org/10.1016/j.ijheatmasstransfer.2018.12.067.CrossRef Zing, C., Mahjoob, S., and Vafai, K., Analysis of Porous Filled Heat Exchangers for Electronic Cooling, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 268–276; doi.org/10.1016/j.ijheatmasstransfer.2018.12.067.CrossRef
37.
Zurück zum Zitat Borjigin, S., Zhang, S., Ma, T., Zeng, M., and Wang, Q., Performance Enhancement of Cabinet Cooling System by Utilizing Cross-Flow Plate Heat Exchanger, Energy Conversion and Management, 2020, vol. 213, no. 112854; doi.org/10.1016/j.enconman.2020.112854.CrossRef Borjigin, S., Zhang, S., Ma, T., Zeng, M., and Wang, Q., Performance Enhancement of Cabinet Cooling System by Utilizing Cross-Flow Plate Heat Exchanger, Energy Conversion and Management, 2020, vol. 213, no. 112854; doi.org/10.1016/j.enconman.2020.112854.CrossRef
38.
Zurück zum Zitat Colangelo, G., Favale, E., Milanese, M., de Risi, A., and Laforgia, D., Cooling of Electronic Devices: Nanofluids Contribution, Appl. Therm. Engin., 2017, vol. 127, pp. 421–435; doi.org/10.1016/j.applthermaleng.2017.08.042.CrossRef Colangelo, G., Favale, E., Milanese, M., de Risi, A., and Laforgia, D., Cooling of Electronic Devices: Nanofluids Contribution, Appl. Therm. Engin., 2017, vol. 127, pp. 421–435; doi.org/10.1016/j.applthermaleng.2017.08.042.CrossRef
39.
Zurück zum Zitat Xie, W., Lv, X., Liu, D., Li, L., and Yao, W. Numerical Investigation of Flow Boiling in Manifold Microchannel-Based Heat Exchangers, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120493; doi.org/ 10.1016/j.ijheatmasstransfer.2020.120493.CrossRef Xie, W., Lv, X., Liu, D., Li, L., and Yao, W. Numerical Investigation of Flow Boiling in Manifold Microchannel-Based Heat Exchangers, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120493; doi.org/ 10.1016/j.ijheatmasstransfer.2020.120493.CrossRef
40.
Zurück zum Zitat Wu, Z., Cao, Z., and Sundén, B., Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition, Appl. Energy, 2019, vol. 249, pp. 286–299; doi.org/10.1016/j.apenergy.2019.04.160.CrossRef Wu, Z., Cao, Z., and Sundén, B., Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition, Appl. Energy, 2019, vol. 249, pp. 286–299; doi.org/10.1016/j.apenergy.2019.04.160.CrossRef
41.
Zurück zum Zitat Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/j.ijheatmasstransfer.2020.119622.CrossRef Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/j.ijheatmasstransfer.2020.119622.CrossRef
42.
Zurück zum Zitat Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.CrossRef Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.CrossRef
43.
Zurück zum Zitat Das, S., Kumar, D.S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Therm. Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.CrossRef Das, S., Kumar, D.S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Therm. Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.CrossRef
44.
Zurück zum Zitat Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/j.ijheatmasstransfer.2018.05.033.CrossRef Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/j.ijheatmasstransfer.2018.05.033.CrossRef
45.
Zurück zum Zitat Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.CrossRef Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.CrossRef
46.
Zurück zum Zitat Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.CrossRef Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.CrossRef
47.
Zurück zum Zitat Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.CrossRef Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.CrossRef
48.
Zurück zum Zitat Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. e55387; doi.org/10.3791/55387.CrossRef Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. e55387; doi.org/10.3791/55387.CrossRef
49.
Zurück zum Zitat Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement When Boiling on Finned Surfaces, J. Phys.: Conf. Ser. (APTPH XVI 2020), 2021, vol. 1867, p. 012024; DOI: 10.1088/1742-6596/1867/1/ 012024.CrossRef Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement When Boiling on Finned Surfaces, J. Phys.: Conf. Ser. (APTPH XVI 2020), 2021, vol. 1867, p. 012024; DOI: 10.1088/1742-6596/1867/1/ 012024.CrossRef
50.
Zurück zum Zitat Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.CrossRef Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.CrossRef
51.
Zurück zum Zitat Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.CrossRef Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.CrossRef
52.
Zurück zum Zitat Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.CrossRef Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.CrossRef
53.
Zurück zum Zitat Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.ADSCrossRef Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.ADSCrossRef
54.
Zurück zum Zitat Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids, Sci. Reps., 2018, vol. 8, no. 7461, pp. 1–8; doi.org/10.1038/s41598-018-25843-5.CrossRef Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids, Sci. Reps., 2018, vol. 8, no. 7461, pp. 1–8; doi.org/10.1038/s41598-018-25843-5.CrossRef
55.
Zurück zum Zitat Tran, N., Sajjad, U., Lin, R., and Wang, C.-C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.CrossRef Tran, N., Sajjad, U., Lin, R., and Wang, C.-C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.CrossRef
56.
Zurück zum Zitat Cao, Z., Wu, Z., Pham, A.-D., Yang, Y., Abbood, S., and Falkman, P., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.CrossRef Cao, Z., Wu, Z., Pham, A.-D., Yang, Y., Abbood, S., and Falkman, P., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.CrossRef
57.
Zurück zum Zitat Manetti, L.L.G., Ribatski, R.R., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Thermal Fluid Sci., 2019, p. 110025; doi.org/10.1016/j.expthermflusci.2019.110025.CrossRef Manetti, L.L.G., Ribatski, R.R., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Thermal Fluid Sci., 2019, p. 110025; doi.org/10.1016/j.expthermflusci.2019.110025.CrossRef
58.
Zurück zum Zitat McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in 1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, pp. 64–72; doi.org/10.1109/STHERM.1991.152914. McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in 1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, pp. 64–72; doi.org/10.1109/STHERM.1991.152914.
59.
Zurück zum Zitat Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509-516; doi.org/10.1115/ 1.1288708.CrossRef Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509-516; doi.org/10.1115/ 1.1288708.CrossRef
60.
Zurück zum Zitat Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/j.ijheatmasstransfer.2007.02.003.CrossRef Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/j.ijheatmasstransfer.2007.02.003.CrossRef
61.
Zurück zum Zitat Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.CrossRef Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.CrossRef
62.
Zurück zum Zitat Chu, K.H., Joung, Y.S., Enright, R., Buie, C.R., and Wang, E.N., Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement, Appl. Phys. Lett., 2013, vol. 102, no. 15; doi.org/10.1063/ 1.4801811.ADSCrossRef Chu, K.H., Joung, Y.S., Enright, R., Buie, C.R., and Wang, E.N., Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement, Appl. Phys. Lett., 2013, vol. 102, no. 15; doi.org/10.1063/ 1.4801811.ADSCrossRef
63.
Zurück zum Zitat Suna, Y., Shuaia, M., Zhanga, S., Tanga, Y., Chena, G., and Zhonga, G., Hierarchically 3D-Textured Copper Surfaces with Enhanced Wicking Properties for High-Power Cooling, Appl. Therm. Engin., 2020, vol. 178, p. 115650; doi.org/10.1016/j.applthermaleng.2020.115650.CrossRef Suna, Y., Shuaia, M., Zhanga, S., Tanga, Y., Chena, G., and Zhonga, G., Hierarchically 3D-Textured Copper Surfaces with Enhanced Wicking Properties for High-Power Cooling, Appl. Therm. Engin., 2020, vol. 178, p. 115650; doi.org/10.1016/j.applthermaleng.2020.115650.CrossRef
64.
Zurück zum Zitat Li, Q., Lan, Z., Chun, J., Wen, R., and Ma, X., Composite Porous Surfaces of Microcavities for Enhancing Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2021, vol. 177, p. 121513; doi.org/10.1016/j.ijheatmasstransfer.2021.121513.CrossRef Li, Q., Lan, Z., Chun, J., Wen, R., and Ma, X., Composite Porous Surfaces of Microcavities for Enhancing Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2021, vol. 177, p. 121513; doi.org/10.1016/j.ijheatmasstransfer.2021.121513.CrossRef
65.
Zurück zum Zitat Roizen, L.I., Rachitskii, D.G., Rubin, I.R., Vertogradskaya, L.M., Yudina, L.A., and Pypkina, M.B., Heat-Transfer with Boiling of Nitrogen and Freon-113 on Porous Metallic Coatings, High Temp., 1982, vol. 20, no. 2, pp. 264–270. Roizen, L.I., Rachitskii, D.G., Rubin, I.R., Vertogradskaya, L.M., Yudina, L.A., and Pypkina, M.B., Heat-Transfer with Boiling of Nitrogen and Freon-113 on Porous Metallic Coatings, High Temp., 1982, vol. 20, no. 2, pp. 264–270.
66.
Zurück zum Zitat Scurlock, R.G., Enhanced Boiling Heat Transfer Surfaces, Cryogenics, 1995, vol. 35, no. 4, pp. 233–237.ADSCrossRef Scurlock, R.G., Enhanced Boiling Heat Transfer Surfaces, Cryogenics, 1995, vol. 35, no. 4, pp. 233–237.ADSCrossRef
67.
Zurück zum Zitat Surtaev, A.S., Pavlenko, A.N., Kalita, V.I., Kuznetsov, D.V., Komlev, D.I., Radyuk, A.A., and Ivannikov, A.Yu., The Influence of Three-Dimensional Capillary-Porous Coatings on Heat Transfer at Liquid Boiling, Tech. Phys. Lett., 2016, vol. 42, no. 4, pp. 391–394; doi.org/10.1134/S106378501604026X.ADSCrossRef Surtaev, A.S., Pavlenko, A.N., Kalita, V.I., Kuznetsov, D.V., Komlev, D.I., Radyuk, A.A., and Ivannikov, A.Yu., The Influence of Three-Dimensional Capillary-Porous Coatings on Heat Transfer at Liquid Boiling, Tech. Phys. Lett., 2016, vol. 42, no. 4, pp. 391–394; doi.org/10.1134/S106378501604026X.ADSCrossRef
68.
Zurück zum Zitat Surtaev, A., Kuznetsov, D., Serdyukov, V., Pavlenko, A., Kalita, V., Komlev, D., Ivannikov, A., and Radyuk, A., Structured Capillary-Porous Coatings for Enhancement of Heat Transfer at Pool Boiling, Appl. Therm. Engin., 2018, vol. 133, pp. 532–542; doi.org/10.1016/j.applthermaleng.2018.01.051.CrossRef Surtaev, A., Kuznetsov, D., Serdyukov, V., Pavlenko, A., Kalita, V., Komlev, D., Ivannikov, A., and Radyuk, A., Structured Capillary-Porous Coatings for Enhancement of Heat Transfer at Pool Boiling, Appl. Therm. Engin., 2018, vol. 133, pp. 532–542; doi.org/10.1016/j.applthermaleng.2018.01.051.CrossRef
69.
Zurück zum Zitat Kuznetsov, D.V., Pavlenko, A.N., Radyuk, A.A., Komlev, D.I., and Kalita, V.I., Features of Heat Transfer During Pool Boiling of Nitrogen on Surfaces with Capillary-Porous Coatings of Various Thicknesses, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 375–387; doi.org/10.1134/S1810232820030017.CrossRef Kuznetsov, D.V., Pavlenko, A.N., Radyuk, A.A., Komlev, D.I., and Kalita, V.I., Features of Heat Transfer During Pool Boiling of Nitrogen on Surfaces with Capillary-Porous Coatings of Various Thicknesses, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 375–387; doi.org/10.1134/S1810232820030017.CrossRef
70.
Zurück zum Zitat Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study of Heat Transfer and Critical Heat Flux During Pool Boiling of Nitrogen on Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, 341–349.CrossRef Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study of Heat Transfer and Critical Heat Flux During Pool Boiling of Nitrogen on Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, 341–349.CrossRef
71.
Zurück zum Zitat Tsukamoto, O. and Uyemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryogenic Eng., 1980, vol. 25, pp. 476–482; doi.org/10.1007/978-1-4613-9856-1_57. Tsukamoto, O. and Uyemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryogenic Eng., 1980, vol. 25, pp. 476–482; doi.org/10.1007/978-1-4613-9856-1_57.
72.
Zurück zum Zitat Kondaurova, L.P., Boiling of Nitrogen at Stepwise Heat Release at Different Pressures, Izv. SO AN SSSR. Ser. Tech. Nauk, 1988, vol. 21, no. 6, pp. 102–103. Kondaurova, L.P., Boiling of Nitrogen at Stepwise Heat Release at Different Pressures, Izv. SO AN SSSR. Ser. Tech. Nauk, 1988, vol. 21, no. 6, pp. 102–103.
73.
Zurück zum Zitat Tsoi, A.N. and Lutset, M.O., Boiling of Helium-II, Helium-I and Nitrogen at Nonstationary Heat Release, J. Eng. Phys. Thermophys., 1986, vol. 51, no. 1, pp. 5–9; doi.org/10.1007/BF00871351.CrossRef Tsoi, A.N. and Lutset, M.O., Boiling of Helium-II, Helium-I and Nitrogen at Nonstationary Heat Release, J. Eng. Phys. Thermophys., 1986, vol. 51, no. 1, pp. 5–9; doi.org/10.1007/BF00871351.CrossRef
74.
Zurück zum Zitat Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a Self-Sustaining Evaporating Front, Thermophys. Aeromech., 1999, vol. 6, no. 1, pp. 105–117. Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a Self-Sustaining Evaporating Front, Thermophys. Aeromech., 1999, vol. 6, no. 1, pp. 105–117.
75.
Zurück zum Zitat Pavlenko, A.N. and Lel, V.V., Model of Self-Maintaining Evaporation Front for Superheated Liquids, Procs. of the Third Int. Conf. on Multiphase Flow, ICMF-98, Lyon, France, 1998, no. 4. pp. 3–5, Prod. By File M, www.filem.com. Pavlenko, A.N. and Lel, V.V., Model of Self-Maintaining Evaporation Front for Superheated Liquids, Procs. of the Third Int. Conf. on Multiphase Flow, ICMF-98, Lyon, France, 1998, no. 4. pp. 3–5, Prod. By File M, www.filem.com.
76.
Zurück zum Zitat Pavlenko, A.N., Zhukov, V.E., and Starodubtseva, I.P., Propagation of Selfsustained Evaporation Fronts at Step-Wise Heat Generation and Crisis Phenomena at Pool Boiling, Computat. Thermal Sci., 2011, vol. 3, no. 5, pp. 419–426; doi.org/10.1615/ComputThermalScien.2011004011.CrossRef Pavlenko, A.N., Zhukov, V.E., and Starodubtseva, I.P., Propagation of Selfsustained Evaporation Fronts at Step-Wise Heat Generation and Crisis Phenomena at Pool Boiling, Computat. Thermal Sci., 2011, vol. 3, no. 5, pp. 419–426; doi.org/10.1615/ComputThermalScien.2011004011.CrossRef
77.
Zurück zum Zitat Artemyev, B.V., Ivanovsky, M.N., Litvinova, L.A., and Sviridenko, I.P., Modes of Degraded Heat Transfer of a Shock-Heated Conductor in a Large Volume of Liquid Nitrogen, High Temp., 1979, vol. 17, no. 16, pp. 1259–1264. Artemyev, B.V., Ivanovsky, M.N., Litvinova, L.A., and Sviridenko, I.P., Modes of Degraded Heat Transfer of a Shock-Heated Conductor in a Large Volume of Liquid Nitrogen, High Temp., 1979, vol. 17, no. 16, pp. 1259–1264.
78.
Zurück zum Zitat Sinha, D.N., Brodie, L.C., Semura, J.S., and Young, F.M., Premature Transition to Stable Film Boiling Initiated by Power Transients in Liquid Nitrogen, Cryogenics, 1979, no. 4, pp. 225–230; doi.org/10.1016/ 0011-2275(79)90023-7.ADSCrossRef Sinha, D.N., Brodie, L.C., Semura, J.S., and Young, F.M., Premature Transition to Stable Film Boiling Initiated by Power Transients in Liquid Nitrogen, Cryogenics, 1979, no. 4, pp. 225–230; doi.org/10.1016/ 0011-2275(79)90023-7.ADSCrossRef
79.
Zurück zum Zitat Yanagi, H. and Akiyama, M., Transient Heat Transfer in Liquid Helium and Nitrogen, J. Faculty Eng., Univ. Tokyo, 1981, vol. 36, no. 6, pp. 233–248. Yanagi, H. and Akiyama, M., Transient Heat Transfer in Liquid Helium and Nitrogen, J. Faculty Eng., Univ. Tokyo, 1981, vol. 36, no. 6, pp. 233–248.
80.
Zurück zum Zitat Pavlenko, A.N. and Chekhovich, V.Yu., Critical Heat Flux at Transient Heat Generation and Dynamics Change of Boiling Regimes, Low Temp. Phys., 1990, vol. 16, no. 4, pp. 510–512. Pavlenko, A.N. and Chekhovich, V.Yu., Critical Heat Flux at Transient Heat Generation and Dynamics Change of Boiling Regimes, Low Temp. Phys., 1990, vol. 16, no. 4, pp. 510–512.
81.
Zurück zum Zitat Roth, E.W., Bodegom, E., Brodie, L.G., and Semura, J.S., Transient Heat Transfer in Liquid Nitrogen, Adv. Cryogenic Eng., 1990, vol. 35, pp. 447–452; doi.org/10.1007/978-1-4613-0639-9_53. Roth, E.W., Bodegom, E., Brodie, L.G., and Semura, J.S., Transient Heat Transfer in Liquid Nitrogen, Adv. Cryogenic Eng., 1990, vol. 35, pp. 447–452; doi.org/10.1007/978-1-4613-0639-9_53.
82.
Zurück zum Zitat Pavlenko, A.N. and Chekhovich, V.Yu., Heat Transfer Crisis at Transient Heat Release, Russ. J. Engin. Thermophys., 1991, vol. 1, no. 1, pp. 73–92. Pavlenko, A.N. and Chekhovich, V.Yu., Heat Transfer Crisis at Transient Heat Release, Russ. J. Engin. Thermophys., 1991, vol. 1, no. 1, pp. 73–92.
83.
Zurück zum Zitat Pavlenko, A.N., Starodubtseva, I.P., and Chekhovich, V.Yu., Calculating Model for Critical Heat Flux and Dynamical Characteristics of Film Boiling Regime Development at Transient Heat Generation on Nonisothermal Surfaces in Cryogenic Liquids, Cryogenics, 1992, vol. 32, no. 1, pp. 241–244; doi.org/10.1016/ 0011-2275(92)90153-2.ADSCrossRef Pavlenko, A.N., Starodubtseva, I.P., and Chekhovich, V.Yu., Calculating Model for Critical Heat Flux and Dynamical Characteristics of Film Boiling Regime Development at Transient Heat Generation on Nonisothermal Surfaces in Cryogenic Liquids, Cryogenics, 1992, vol. 32, no. 1, pp. 241–244; doi.org/10.1016/ 0011-2275(92)90153-2.ADSCrossRef
84.
Zurück zum Zitat Drach, V., Sack, N., and Fricke, J., Transient Heat Transfer from Surfaces of Defined Roughness into Liquid Nitrogen, Int. J. Heat Mass Transfer, 1996, vol. 39, no. 9, pp. 1953–1961; doi.org/10.1016/0017-9310(95)00267-7.CrossRef Drach, V., Sack, N., and Fricke, J., Transient Heat Transfer from Surfaces of Defined Roughness into Liquid Nitrogen, Int. J. Heat Mass Transfer, 1996, vol. 39, no. 9, pp. 1953–1961; doi.org/10.1016/0017-9310(95)00267-7.CrossRef
85.
Zurück zum Zitat Drach, V. and Fricke, J., Transient Heat Transfer from Smooth Surfaces into Liquid Nitrogen, Cryogenics, 1996, vol. 36, no. 4, pp. 263–269; doi.org/10.1016/0011-2275(96)88785-6.ADSCrossRef Drach, V. and Fricke, J., Transient Heat Transfer from Smooth Surfaces into Liquid Nitrogen, Cryogenics, 1996, vol. 36, no. 4, pp. 263–269; doi.org/10.1016/0011-2275(96)88785-6.ADSCrossRef
86.
Zurück zum Zitat Pavlenko, A.N., Transitional Processes and Crisis Phenomena in Boiling of Cryogenic Liquids, NATO Sci. Ser. (Ser. II: Math., Phys. Chem.), 2003, vol. 99, pp. 145–164; doi.org/10.1007/978-94-010-0099-4_9. Pavlenko, A.N., Transitional Processes and Crisis Phenomena in Boiling of Cryogenic Liquids, NATO Sci. Ser. (Ser. II: Math., Phys. Chem.), 2003, vol. 99, pp. 145–164; doi.org/10.1007/978-94-010-0099-4_9.
87.
Zurück zum Zitat Pavlenko, A.N. and Chekhovich, V.Yu., Interconnection Between Dynamics of Liquid Boiling-up and Heat Transfer Crisis for Nonstationary Heat Release, J. Eng. Therm., 2007, vol. 16, no. 3, pp. 175–187; doi.org/10.1134/S1810232807030101.CrossRef Pavlenko, A.N. and Chekhovich, V.Yu., Interconnection Between Dynamics of Liquid Boiling-up and Heat Transfer Crisis for Nonstationary Heat Release, J. Eng. Therm., 2007, vol. 16, no. 3, pp. 175–187; doi.org/10.1134/S1810232807030101.CrossRef
88.
Zurück zum Zitat Surtaev, A.S., Pavlenko, A.N., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyuk, A.A., Heat Transfer and Crisis Phenomena at Pool Boiling of Liquid Nitrogen on the Surfaces with Capillary-Porous Coatings, Int. J. Heat Mass Transfer, 2017, vol. 108, part A, pp. 146–155; doi.org/ 10.1016/j.ijheatmasstransfer.2016.11.100.CrossRef Surtaev, A.S., Pavlenko, A.N., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyuk, A.A., Heat Transfer and Crisis Phenomena at Pool Boiling of Liquid Nitrogen on the Surfaces with Capillary-Porous Coatings, Int. J. Heat Mass Transfer, 2017, vol. 108, part A, pp. 146–155; doi.org/ 10.1016/j.ijheatmasstransfer.2016.11.100.CrossRef
89.
Zurück zum Zitat Pavlenko, A.N., Kuznetsov, A.N., and Surtaev, A.S., Experimental Study of the Influence of Structured Capillary-Porous Coatings on the Dynamics of Development of Transient Processes and the Crisis Phenomena at Stepwise Heat Release, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 285–293; doi.org/10.1134/ S1810232818030037.CrossRef Pavlenko, A.N., Kuznetsov, A.N., and Surtaev, A.S., Experimental Study of the Influence of Structured Capillary-Porous Coatings on the Dynamics of Development of Transient Processes and the Crisis Phenomena at Stepwise Heat Release, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 285–293; doi.org/10.1134/ S1810232818030037.CrossRef
90.
Zurück zum Zitat Tsoi, A.N. and Pavlenko, A.N., Enhancement of Transient Heat Transfer at Boiling on a Plate Surface with Low Thermoconductive Coatings, Thermophys. Aeromech., 2015, vol. 22, no. 6, pp. 707–712; doi.org/10.1134/S0869864315060062.ADSCrossRef Tsoi, A.N. and Pavlenko, A.N., Enhancement of Transient Heat Transfer at Boiling on a Plate Surface with Low Thermoconductive Coatings, Thermophys. Aeromech., 2015, vol. 22, no. 6, pp. 707–712; doi.org/10.1134/S0869864315060062.ADSCrossRef
91.
Zurück zum Zitat Pavlenko, A.N., Chekhovich, V.Yu., and Starodubtseva, I.P., Study of Propagation Dynamics for the Site of Film Regime Boiling, Russ. J. Engin. Thermophys., 1994, vol. 4, no. 4, pp. 323–347. Pavlenko, A.N., Chekhovich, V.Yu., and Starodubtseva, I.P., Study of Propagation Dynamics for the Site of Film Regime Boiling, Russ. J. Engin. Thermophys., 1994, vol. 4, no. 4, pp. 323–347.
92.
Zurück zum Zitat Pavlenko, A.N. and Starodubtseva, I.P., Investigation of the Development Dynamics of Semi-Infinite and Local Film Boiling Sites, Thermophys. Aeromech., 1998, vol. 5, no. 2, pp. 216–228. Pavlenko, A.N. and Starodubtseva, I.P., Investigation of the Development Dynamics of Semi-Infinite and Local Film Boiling Sites, Thermophys. Aeromech., 1998, vol. 5, no. 2, pp. 216–228.
93.
Zurück zum Zitat Pavlenko, A.N., Pecherkin, N.I., and Volodin, O.A., Teploobmen i krizisnye yavleniya v stekayuschikh plenkakh zhidkosti pri isparenii i kipenii (Heat Transfer and Crisis Phenomena in Falling Films of Liquid under Evaporation and Boiling), Novosibirsk: SO RAN, 2016. Pavlenko, A.N., Pecherkin, N.I., and Volodin, O.A., Teploobmen i krizisnye yavleniya v stekayuschikh plenkakh zhidkosti pri isparenii i kipenii (Heat Transfer and Crisis Phenomena in Falling Films of Liquid under Evaporation and Boiling), Novosibirsk: SO RAN, 2016.
94.
Zurück zum Zitat Alekseenko, S.V., Nazarov, A.D., Pavlenko, A.N., Serov, A.F., and Chekhovich, V.Yu., The Flow of Cryogenic Liquid Film over a Vertical Surface, Thermophys. Aeromech., 1997, vol. 4, no. 3, pp. 307–318. Alekseenko, S.V., Nazarov, A.D., Pavlenko, A.N., Serov, A.F., and Chekhovich, V.Yu., The Flow of Cryogenic Liquid Film over a Vertical Surface, Thermophys. Aeromech., 1997, vol. 4, no. 3, pp. 307–318.
95.
Zurück zum Zitat Pavlenko, A.N., Volodin, O.A., and Surtaev, A.S., Hydrodynamics in Falling Liquid Films on Surfaces with Complex Geometry, Appl. Therm. Engin., 2017, vol. 114, pp. 1265–1274; doi.org/10.1016/ j.applthermaleng.2016.10.013.CrossRef Pavlenko, A.N., Volodin, O.A., and Surtaev, A.S., Hydrodynamics in Falling Liquid Films on Surfaces with Complex Geometry, Appl. Therm. Engin., 2017, vol. 114, pp. 1265–1274; doi.org/10.1016/ j.applthermaleng.2016.10.013.CrossRef
96.
Zurück zum Zitat Yoshiyuki, I. and Xi, C., Development of Numerical Prediction of Liquid Film Flows on Packing Elements in Absorbers, IHI Engin. Rev., 2011, vol. 44, pp. 1–8. Yoshiyuki, I. and Xi, C., Development of Numerical Prediction of Liquid Film Flows on Packing Elements in Absorbers, IHI Engin. Rev., 2011, vol. 44, pp. 1–8.
97.
Zurück zum Zitat Li, H., Yi, F., Li, X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 27, no. 1, pp. 1–19; doi.org/10.1134/S1810232818010010.CrossRef Li, H., Yi, F., Li, X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 27, no. 1, pp. 1–19; doi.org/10.1134/S1810232818010010.CrossRef
98.
Zurück zum Zitat Pavlenko, A.N. and Lel’, V.V., Heat Transfer and Crisis Phenomena in Falling Films of Cryogenic Liquid, Russ. J. Engin. Thermophys., 1997, vol. 7, nos. 3/4, pp. 177–210. Pavlenko, A.N. and Lel’, V.V., Heat Transfer and Crisis Phenomena in Falling Films of Cryogenic Liquid, Russ. J. Engin. Thermophys., 1997, vol. 7, nos. 3/4, pp. 177–210.
99.
Zurück zum Zitat Pavlenko, A.N. and Lel’, V.V., Evaporating and Boiling of Falling Films of Cryogenic Liquid: Heat Transfer and Development of Dry Spots, in Procs. of the Int. Conf. on Compact Heat Exchangers for the Process Industries, 18–23 July, 1999, Banff, Canada, 1999, pp. 319–327. Pavlenko, A.N. and Lel’, V.V., Evaporating and Boiling of Falling Films of Cryogenic Liquid: Heat Transfer and Development of Dry Spots, in Procs. of the Int. Conf. on Compact Heat Exchangers for the Process Industries, 18–23 July, 1999, Banff, Canada, 1999, pp. 319–327.
100.
Zurück zum Zitat Pavlenko, A.N., Hydrodynamics and Heat Transfer in Boiling and Evaporation in Cryogenic Falling Films and Applications, NATO Sci. Ser. (Ser. II: Math., Phys. Chem.), 2003, vol. 99, pp. 181–200; doi.org/10.1007/978-94-010-0099-4_11. Pavlenko, A.N., Hydrodynamics and Heat Transfer in Boiling and Evaporation in Cryogenic Falling Films and Applications, NATO Sci. Ser. (Ser. II: Math., Phys. Chem.), 2003, vol. 99, pp. 181–200; doi.org/10.1007/978-94-010-0099-4_11.
101.
Zurück zum Zitat Matsekh, A.M. and Pavlenko, A.N., Heat Transfer and Crisis Phenomena in the Falling Films of Cryogenic Liquid, Thermophys. Aeromech., 2005, vol. 12, no. 1, pp. 99–112. Matsekh, A.M. and Pavlenko, A.N., Heat Transfer and Crisis Phenomena in the Falling Films of Cryogenic Liquid, Thermophys. Aeromech., 2005, vol. 12, no. 1, pp. 99–112.
102.
Zurück zum Zitat Pavlenko, A.N., Matsekh, A.M., Pecherkin, N.I., Kneer, R., Lel, V.V., and Surtaev, A.S., Heat Transfer and Crisis Phenomena with Intense Boiling in the Falling Wave Liquid Films, Thermophys. Aeromech., 2006, vol. 13, no. 1, pp. 85–96; doi.org/10.1134/S1531869906010096.ADSCrossRef Pavlenko, A.N., Matsekh, A.M., Pecherkin, N.I., Kneer, R., Lel, V.V., and Surtaev, A.S., Heat Transfer and Crisis Phenomena with Intense Boiling in the Falling Wave Liquid Films, Thermophys. Aeromech., 2006, vol. 13, no. 1, pp. 85–96; doi.org/10.1134/S1531869906010096.ADSCrossRef
103.
Zurück zum Zitat Hesselgreaves, J.E., Compact Heat Exchangers, Selection, Design and Operation, Amsterdam: Pergamon, 2001. Hesselgreaves, J.E., Compact Heat Exchangers, Selection, Design and Operation, Amsterdam: Pergamon, 2001.
104.
Zurück zum Zitat Thome, J.R., Engineering Data Book III, Wolverine Tube, 2004. Thome, J.R., Engineering Data Book III, Wolverine Tube, 2004.
105.
Zurück zum Zitat Christians, M. and Thome, J.R., Falling Film Evaporation on Enhanced Tubes, Part 1: Experimental Results for Pool Boiling, Onset-of-Dryout and Falling Film Evaporation, Int. J. Refrig., 2012, vol. 35, no. 2, pp. 300–312; doi.org/10.1016/j.ijrefrig.2011.10.020.CrossRef Christians, M. and Thome, J.R., Falling Film Evaporation on Enhanced Tubes, Part 1: Experimental Results for Pool Boiling, Onset-of-Dryout and Falling Film Evaporation, Int. J. Refrig., 2012, vol. 35, no. 2, pp. 300–312; doi.org/10.1016/j.ijrefrig.2011.10.020.CrossRef
106.
Zurück zum Zitat Popov, I.A., Makhyanov, H.M., and Gureev, V.M., Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena (Physical Basis and Industrial Application of Heat Transfer Intensification), Kazan: Tsentr innovatsionnykh tekhnologii, 2009. Popov, I.A., Makhyanov, H.M., and Gureev, V.M., Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena (Physical Basis and Industrial Application of Heat Transfer Intensification), Kazan: Tsentr innovatsionnykh tekhnologii, 2009.
107.
Zurück zum Zitat Zubkov, N.N., Ovchinnikov, A.I., and Sedov, A.V., Implementation of the Method of Deforming Cutting with Rotary Cutters. Determination of Geometric Parameters of the Processing Zone, Izv. Vuzov. Mashinostr., 2012, no. 1, pp. 67–74. Zubkov, N.N., Ovchinnikov, A.I., and Sedov, A.V., Implementation of the Method of Deforming Cutting with Rotary Cutters. Determination of Geometric Parameters of the Processing Zone, Izv. Vuzov. Mashinostr., 2012, no. 1, pp. 67–74.
108.
Zurück zum Zitat Popov, I.A., Zubkov, N.N., Kaskov, S.I., and Shchelchkov, A.V., Heat Transfer During Liquid Boiling on Microstructured Surfaces. Part 1: Heat Transfer During Water Boiling, Thermal Engin., 2013, no. 60, pp. 157–165; doi.org/10.1134/S004060151303004X.ADSCrossRef Popov, I.A., Zubkov, N.N., Kaskov, S.I., and Shchelchkov, A.V., Heat Transfer During Liquid Boiling on Microstructured Surfaces. Part 1: Heat Transfer During Water Boiling, Thermal Engin., 2013, no. 60, pp. 157–165; doi.org/10.1134/S004060151303004X.ADSCrossRef
109.
Zurück zum Zitat Popov, I.A. and Shchelchkov, A.V., Boiling of Various Liquids on Microstructured Surfaces, Engin. Phys. J., 2014, vol. 87, no. 6, pp. 1362–1374; doi.org/10.1007/s10891-014-1146-6.CrossRef Popov, I.A. and Shchelchkov, A.V., Boiling of Various Liquids on Microstructured Surfaces, Engin. Phys. J., 2014, vol. 87, no. 6, pp. 1362–1374; doi.org/10.1007/s10891-014-1146-6.CrossRef
110.
Zurück zum Zitat Fagerholm, N.E., Ghazanfari, A.R., Kivioja, K., and Järvinen, E., Boiling Heat Transfer Performance of Plain and Porous Tubes in Falling Film Flow of Refrigerant R114, Wärme- und Stoffübertragung, 1987, vol. 21, pp. 343–353; doi.org/10.1007/bf01376289.ADSCrossRef Fagerholm, N.E., Ghazanfari, A.R., Kivioja, K., and Järvinen, E., Boiling Heat Transfer Performance of Plain and Porous Tubes in Falling Film Flow of Refrigerant R114, Wärme- und Stoffübertragung, 1987, vol. 21, pp. 343–353; doi.org/10.1007/bf01376289.ADSCrossRef
111.
Zurück zum Zitat Gambaryan-Roisman, T. and Stephan, P., Heat Transfer Analysis of Falling Film Evaporation on Structured Surfaces, in Procs. of the 12th Int. Heat Transfer Conf., Grenoble, France, 2002, pp. 449–454; doi.org/10.1615/IHTC12.2530. Gambaryan-Roisman, T. and Stephan, P., Heat Transfer Analysis of Falling Film Evaporation on Structured Surfaces, in Procs. of the 12th Int. Heat Transfer Conf., Grenoble, France, 2002, pp. 449–454; doi.org/10.1615/IHTC12.2530.
112.
Zurück zum Zitat Salvagnini, W. and Taqueda, M.A., Falling-Film Evaporator with Film Promoters, Ind. Eng. Chem. Res., 2004, vol. 43. no. 21, pp. 6832–6835; doi.org/10.1021/ie0307636.CrossRef Salvagnini, W. and Taqueda, M.A., Falling-Film Evaporator with Film Promoters, Ind. Eng. Chem. Res., 2004, vol. 43. no. 21, pp. 6832–6835; doi.org/10.1021/ie0307636.CrossRef
113.
Zurück zum Zitat Helbig, K., Nasarek, R., Gambaryan-Roisman, T., and Stephan, P., Effect of Longitudinal Minigrooves on Flow Stability and Wave Characteristics of Falling Liquid Films, J. Heat Transfer, 2009, vol. 131, no. 1, pp. 011601–011608; doi.org/10.1115/1.2993539.CrossRef Helbig, K., Nasarek, R., Gambaryan-Roisman, T., and Stephan, P., Effect of Longitudinal Minigrooves on Flow Stability and Wave Characteristics of Falling Liquid Films, J. Heat Transfer, 2009, vol. 131, no. 1, pp. 011601–011608; doi.org/10.1115/1.2993539.CrossRef
114.
Zurück zum Zitat Klemm, E., Mathivanan, G., Schwarz, T., and Schirrmeister, S., Evaporation of Hydrogen Peroxide with a Microstructured Falling Film, Chem. Engin. Processing: Process Intensif., 2011, vol. 50, no. 10, pp. 1010–1016; doi.org/10.1016/j.cep.2011.05.020.CrossRef Klemm, E., Mathivanan, G., Schwarz, T., and Schirrmeister, S., Evaporation of Hydrogen Peroxide with a Microstructured Falling Film, Chem. Engin. Processing: Process Intensif., 2011, vol. 50, no. 10, pp. 1010–1016; doi.org/10.1016/j.cep.2011.05.020.CrossRef
115.
Zurück zum Zitat Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyak, A.A., Experimental Study of Rewetting of a Superheated Plate with Structured Capillary-Porous Coating by Flowing Liquid Film, High Temp., 2018, vol. 56, no. 3, pp. 404–409; doi.org/10.7868/ S0040364418030158.CrossRef Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyak, A.A., Experimental Study of Rewetting of a Superheated Plate with Structured Capillary-Porous Coating by Flowing Liquid Film, High Temp., 2018, vol. 56, no. 3, pp. 404–409; doi.org/10.7868/ S0040364418030158.CrossRef
116.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling Down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158; doi.org/10.1016/j.ijheatmasstransfer.2015.06.050.CrossRef Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling Down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158; doi.org/10.1016/j.ijheatmasstransfer.2015.06.050.CrossRef
117.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Crisis Phenomena at the Film Flows of Freon Mixture over Vertical Structured Surfaces, Heat Transfer Engin., 2016, vol. 37, nos. 3/4, pp. 257–268; doi.org/10.1080/01457632.2015.1052657.ADSCrossRef Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Crisis Phenomena at the Film Flows of Freon Mixture over Vertical Structured Surfaces, Heat Transfer Engin., 2016, vol. 37, nos. 3/4, pp. 257–268; doi.org/10.1080/01457632.2015.1052657.ADSCrossRef
118.
Zurück zum Zitat Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., Stepanov, K.A., and Zubkov, N.N., Influence of the Type of Wall Microstructuring on Heat Transfer During Boiling in Flowing Films of a Low-Viscosity Liquid, Thermal Proc. Engin., 2019, vol. 11, no. 1, pp. 16–23. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., Stepanov, K.A., and Zubkov, N.N., Influence of the Type of Wall Microstructuring on Heat Transfer During Boiling in Flowing Films of a Low-Viscosity Liquid, Thermal Proc. Engin., 2019, vol. 11, no. 1, pp. 16–23.
119.
Zurück zum Zitat Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids, Int. J. Heat Mass Transfer, 2020, vol. 155, pp. 119722-1–119722-10; doi.org/10.1016/j.ijheatmasstransfer.2020.119722.CrossRef Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids, Int. J. Heat Mass Transfer, 2020, vol. 155, pp. 119722-1–119722-10; doi.org/10.1016/j.ijheatmasstransfer.2020.119722.CrossRef
120.
Zurück zum Zitat Read, N., Wang, W., Essa, K., and Attallah, M.M., Selective Laser Melting of AlSi10Mg Alloy: Process Optimization and Mechanical Properties Development, Mater. Design, 2015, vol. 65, pp. 417–424; doi.org/10.1016/j.matdes.2014.09.044.CrossRef Read, N., Wang, W., Essa, K., and Attallah, M.M., Selective Laser Melting of AlSi10Mg Alloy: Process Optimization and Mechanical Properties Development, Mater. Design, 2015, vol. 65, pp. 417–424; doi.org/10.1016/j.matdes.2014.09.044.CrossRef
121.
Zurück zum Zitat Wong, K.K., Ho, J.Y., Leong, K.C., and Wong, T.N., Fabrication of Heat Sinks by Selective Laser Melting for Convective Heat Transfer Applications, Virt. Phys. Prototyp., 2016, vol. 11, pp. 159–165; doi.org/10.1080/17452759.2016.1211849.CrossRef Wong, K.K., Ho, J.Y., Leong, K.C., and Wong, T.N., Fabrication of Heat Sinks by Selective Laser Melting for Convective Heat Transfer Applications, Virt. Phys. Prototyp., 2016, vol. 11, pp. 159–165; doi.org/10.1080/17452759.2016.1211849.CrossRef
122.
Zurück zum Zitat Ho, J.Y., Wong, K.K., Leong, K.C., and Wong, T.N., Convective Heat Transfer Performance of Airfoil Heat Sinks Fabricated by Selective Laser Melting, Int. J. Therm. Sci., 2017, vol. 114, pp. 213–228; doi.org/10.1016/j.ijthermalsci.2016.12.016.CrossRef Ho, J.Y., Wong, K.K., Leong, K.C., and Wong, T.N., Convective Heat Transfer Performance of Airfoil Heat Sinks Fabricated by Selective Laser Melting, Int. J. Therm. Sci., 2017, vol. 114, pp. 213–228; doi.org/10.1016/j.ijthermalsci.2016.12.016.CrossRef
123.
Zurück zum Zitat Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63; doi.org/10.1016/ j.ijheatmasstransfer.2017.12.148.CrossRef Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63; doi.org/10.1016/ j.ijheatmasstransfer.2017.12.148.CrossRef
124.
Zurück zum Zitat Ho, J.Y., Wong, K.K., and Leong, K.C., Saturated Pool Boiling of FC-72 from Enhanced Surfaces Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2016, vol. 99, pp. 107–121; doi.org/10.1016/ j.ijheatmasstransfer.2016.03.073.CrossRef Ho, J.Y., Wong, K.K., and Leong, K.C., Saturated Pool Boiling of FC-72 from Enhanced Surfaces Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2016, vol. 99, pp. 107–121; doi.org/10.1016/ j.ijheatmasstransfer.2016.03.073.CrossRef
125.
Zurück zum Zitat Kang, Z. and Wang, L., Boiling Heat Transfer on Surfaces with 3D-Printing Microstructures, Exp. Thermal Fluid Sci., 2018, vol. 93, pp. 165–170; doi.org/10.1016/j.expthermflusci.2017.12.021.CrossRef Kang, Z. and Wang, L., Boiling Heat Transfer on Surfaces with 3D-Printing Microstructures, Exp. Thermal Fluid Sci., 2018, vol. 93, pp. 165–170; doi.org/10.1016/j.expthermflusci.2017.12.021.CrossRef
126.
Zurück zum Zitat Gogonin, I.I., Heat Transfer and Hydrodynamic Characteristics at Evaporation of Liquid Film Irrigating a Horizontal Bundle of Finned Tubes, IOP Conf. Series: J. Phys.: Conf. Ser., 2019, vol. 1369, no. 012062; doi.org/10.1088/1742-6596/1369/1/012062.CrossRef Gogonin, I.I., Heat Transfer and Hydrodynamic Characteristics at Evaporation of Liquid Film Irrigating a Horizontal Bundle of Finned Tubes, IOP Conf. Series: J. Phys.: Conf. Ser., 2019, vol. 1369, no. 012062; doi.org/10.1088/1742-6596/1369/1/012062.CrossRef
127.
Zurück zum Zitat Gogonin, I.I., Heat Transfer at Boiling of Liquid Film Irrigating a Horizontal Bundle of Rough Tubes, IOP Conf. Series: J. Phys.: Conf. Ser., 2019, vol. 1369, no. 012061; doi.org/10.1088/1742-6596/1369/ 1/012061.CrossRef Gogonin, I.I., Heat Transfer at Boiling of Liquid Film Irrigating a Horizontal Bundle of Rough Tubes, IOP Conf. Series: J. Phys.: Conf. Ser., 2019, vol. 1369, no. 012061; doi.org/10.1088/1742-6596/1369/ 1/012061.CrossRef
128.
Zurück zum Zitat Zhao, C.Y., Jin, P.H., Ji, W.T., He, Y.L., and Tao, W.Q., Experimental Investigations of R134a and R123 Falling Film Evaporation on Enhanced Horizontal Tube, Int. J. Refrig., 2017, vol. 75, pp. 190–203; doi.org/10.1016/j.ijrefrig.2016.12.013.CrossRef Zhao, C.Y., Jin, P.H., Ji, W.T., He, Y.L., and Tao, W.Q., Experimental Investigations of R134a and R123 Falling Film Evaporation on Enhanced Horizontal Tube, Int. J. Refrig., 2017, vol. 75, pp. 190–203; doi.org/10.1016/j.ijrefrig.2016.12.013.CrossRef
129.
Zurück zum Zitat Zhao, C.Y., Ji, W.T., Jin, P.H., Zhong, Y.J., and Tao, W.Q., Experimental Study of the Local and Average Falling Film Evaporation Coefficients in a Horizontal Enhanced Tube Bundle Using R134a, Appl. Therm. Engin., 2018, vol. 129, pp. 502–511; doi.org/10.1016/j.applthermaleng.2017.09.135.CrossRef Zhao, C.Y., Ji, W.T., Jin, P.H., Zhong, Y.J., and Tao, W.Q., Experimental Study of the Local and Average Falling Film Evaporation Coefficients in a Horizontal Enhanced Tube Bundle Using R134a, Appl. Therm. Engin., 2018, vol. 129, pp. 502–511; doi.org/10.1016/j.applthermaleng.2017.09.135.CrossRef
130.
Zurück zum Zitat Jin, P.H., Zhao, C.Y., Ji, W.T., and Tao, W.Q., Experimental Investigation of R410A and R32 Falling Film Evaporation on Horizontal Enhanced Tubes, Appl. Therm. Engin., 2018, vol. 137, pp. 739–748; doi.org/10.1016/j.applthermaleng.2018.03.060.CrossRef Jin, P.H., Zhao, C.Y., Ji, W.T., and Tao, W.Q., Experimental Investigation of R410A and R32 Falling Film Evaporation on Horizontal Enhanced Tubes, Appl. Therm. Engin., 2018, vol. 137, pp. 739–748; doi.org/10.1016/j.applthermaleng.2018.03.060.CrossRef
131.
Zurück zum Zitat Ji, W.T., Zhao, C.Y., Zhang, D.C., Yoshioka, S., He, Y.L., and Tao, W.Q., Effect of Vapor Flow on the Falling Film Evaporation of R134a outside a Horizontal Tube Bundle, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 1171–1181; doi.org/10.1016/j.ijheatmasstransfer.2015.09.023.CrossRef Ji, W.T., Zhao, C.Y., Zhang, D.C., Yoshioka, S., He, Y.L., and Tao, W.Q., Effect of Vapor Flow on the Falling Film Evaporation of R134a outside a Horizontal Tube Bundle, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 1171–1181; doi.org/10.1016/j.ijheatmasstransfer.2015.09.023.CrossRef
132.
Zurück zum Zitat Zhao, C.Y., Ji, W.T., Jin, P.H., and Tao, W.Q., Cross Vapor Stream Effect on Falling Film Evaporation in Horizontal Tube Bundle Using R134a, Heat Transfer Engin., 2017, vol. 39, nos. 7/8, pp. 1–14; doi.org/10.1080/01457632.2017.1327296.ADSCrossRef Zhao, C.Y., Ji, W.T., Jin, P.H., and Tao, W.Q., Cross Vapor Stream Effect on Falling Film Evaporation in Horizontal Tube Bundle Using R134a, Heat Transfer Engin., 2017, vol. 39, nos. 7/8, pp. 1–14; doi.org/10.1080/01457632.2017.1327296.ADSCrossRef
133.
Zurück zum Zitat Zhao, C.Y., Ji, W.T., Jin, P.H., Yoshioka, S., and Tao, W.Q., Effect of Downward Vapor Stream on Falling Film Evaporation of R134a in a Tube Bundle, Int. J. Refrig., 2018, vol. 89, pp. 112–121; doi.org/10.1016/j.ijrefrig.2018.02.027.CrossRef Zhao, C.Y., Ji, W.T., Jin, P.H., Yoshioka, S., and Tao, W.Q., Effect of Downward Vapor Stream on Falling Film Evaporation of R134a in a Tube Bundle, Int. J. Refrig., 2018, vol. 89, pp. 112–121; doi.org/10.1016/j.ijrefrig.2018.02.027.CrossRef
134.
Zurück zum Zitat Bock, B.D., Bucci, M., Markides, C.N., Thome, J.R., and Meyer J.P., Falling Film Boiling of Refrigerants over Nanostructured and Roughened Tubes: Heat Transfer, Dryout and Critical Heat Flux, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120452; doi.org/10.1016/j.ijheatmasstransfer.2020.120452.CrossRef Bock, B.D., Bucci, M., Markides, C.N., Thome, J.R., and Meyer J.P., Falling Film Boiling of Refrigerants over Nanostructured and Roughened Tubes: Heat Transfer, Dryout and Critical Heat Flux, Int. J. Heat Mass Transfer, 2020, vol. 163, p. 120452; doi.org/10.1016/j.ijheatmasstransfer.2020.120452.CrossRef
135.
Zurück zum Zitat Pavlenko, A.N., Pecherkin, N.I., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Heat Transfer in Flowing Films on a Package of Horizontal Pipes with MDO Coating, J. Phys.: Conf. Ser. (STSXXXVI), 2020, vol. 1677, pp. 012091-1–12091-7; DOI: 10.1088/1742-6596/1677/1/012091.CrossRef Pavlenko, A.N., Pecherkin, N.I., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Heat Transfer in Flowing Films on a Package of Horizontal Pipes with MDO Coating, J. Phys.: Conf. Ser. (STSXXXVI), 2020, vol. 1677, pp. 012091-1–12091-7; DOI: 10.1088/1742-6596/1677/1/012091.CrossRef
136.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, accepted for publication. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, accepted for publication.
137.
Zurück zum Zitat Nikiforov, A.A., Nikiforova, G.L., Terleeva, O.P., Slonova, A.I., Eshchenko, V.N., and Dong, K Li., Device for Microelectric Arc Oxidation, RF patent 2248416 C1, 2005. Nikiforov, A.A., Nikiforova, G.L., Terleeva, O.P., Slonova, A.I., Eshchenko, V.N., and Dong, K Li., Device for Microelectric Arc Oxidation, RF patent 2248416 C1, 2005.
138.
Zurück zum Zitat Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., Transient Processes in Falling Films of Liquid Under Conditions of Unsteady-State Heat, High Temp., 2007, vol. 45, no. 6, pp. 905–916; DOI: 10.1134/S0018151X07060144; doi.org/10.1134/S0018151X07060144.CrossRef Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., Transient Processes in Falling Films of Liquid Under Conditions of Unsteady-State Heat, High Temp., 2007, vol. 45, no. 6, pp. 905–916; DOI: 10.1134/S0018151X07060144; doi.org/10.1134/S0018151X07060144.CrossRef
139.
Zurück zum Zitat Pavlenko, A.N. Koverda, V.P., Skokov, V.N., Reshetnikov, A.V., Vinogradov, A.V., and Surtaev, A.S., Dynamics of Transition Processes and Structure Formation in Critical Heat–Mass Transfer Regimes during Liquid Boiling and Cavitation, J. Eng. Therm., 2009, vol. 18, no. 1, pp. 20–38; doi.org/10.1134/ S1810232809010044.CrossRef Pavlenko, A.N. Koverda, V.P., Skokov, V.N., Reshetnikov, A.V., Vinogradov, A.V., and Surtaev, A.S., Dynamics of Transition Processes and Structure Formation in Critical Heat–Mass Transfer Regimes during Liquid Boiling and Cavitation, J. Eng. Therm., 2009, vol. 18, no. 1, pp. 20–38; doi.org/10.1134/ S1810232809010044.CrossRef
140.
Zurück zum Zitat Chernyavskii, A.N. and Pavlenko, A.N., Numerical Simulation of Unsteady-State Heat Transfer in Falling Wavy Films of Liquid, Technical Physics Letters, 2014, vol. 40, no.12, pp. 1039–1041; doi.org/10.1134/ S1063785014120062.ADSCrossRef Chernyavskii, A.N. and Pavlenko, A.N., Numerical Simulation of Unsteady-State Heat Transfer in Falling Wavy Films of Liquid, Technical Physics Letters, 2014, vol. 40, no.12, pp. 1039–1041; doi.org/10.1134/ S1063785014120062.ADSCrossRef
141.
Zurück zum Zitat Pavlenko, A.N., Surtaev, A.S., Tsoi, A.N., Starodubtseva, I.P., and Serdyukov, V.S., Dynamics of Rewetting of the Superheated Surface by the Liquid Film Flowing down, High Temp., 2014, vol. 52, no. 6, pp. 886–894; doi.org/10.7868/S0040364414060118.CrossRef Pavlenko, A.N., Surtaev, A.S., Tsoi, A.N., Starodubtseva, I.P., and Serdyukov, V.S., Dynamics of Rewetting of the Superheated Surface by the Liquid Film Flowing down, High Temp., 2014, vol. 52, no. 6, pp. 886–894; doi.org/10.7868/S0040364414060118.CrossRef
142.
Zurück zum Zitat Starodubtseva, I.P. and Pavlenko, A.N., Numerical Model for Quenching of Hot Surface by the Falling Cryogenic Liquid Film, Proc. of the 1st Thermal and Fluid Engineering Summer Conference (TFESC-15), New York City, USA, 2015; doi.org/10.1615/TFESC1.cmd.013191. Starodubtseva, I.P. and Pavlenko, A.N., Numerical Model for Quenching of Hot Surface by the Falling Cryogenic Liquid Film, Proc. of the 1st Thermal and Fluid Engineering Summer Conference (TFESC-15), New York City, USA, 2015; doi.org/10.1615/TFESC1.cmd.013191.
143.
Zurück zum Zitat Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., and Serdyukov, V.S., Effect of a Low-Thermal-Conductive Coating on the Dynamics of Rewetting of Overheated Plate by Falling Liquid Film, High Temp., 2016, vol. 54, no. 3, pp. 370–376; doi.org/10.7868/S0040364416020149.CrossRef Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., and Serdyukov, V.S., Effect of a Low-Thermal-Conductive Coating on the Dynamics of Rewetting of Overheated Plate by Falling Liquid Film, High Temp., 2016, vol. 54, no. 3, pp. 370–376; doi.org/10.7868/S0040364416020149.CrossRef
144.
Zurück zum Zitat Chernyavskii, A.N. and Pavlenko, A.N., Numerical Simulation of Heat Transfer and Determination of Critical Heat Fluxes at Nonsteady Heat Generation in Falling Wavy Liquid Films, Int. J. Heat Mass Transfer, 2017, vol. 105, pp. 648–654; doi.org/10.1016/j.ijheatmasstransfer.2016.09.017.CrossRef Chernyavskii, A.N. and Pavlenko, A.N., Numerical Simulation of Heat Transfer and Determination of Critical Heat Fluxes at Nonsteady Heat Generation in Falling Wavy Liquid Films, Int. J. Heat Mass Transfer, 2017, vol. 105, pp. 648–654; doi.org/10.1016/j.ijheatmasstransfer.2016.09.017.CrossRef
145.
Zurück zum Zitat Starodubtseva, I.P., Pavlenko, A.N., and Surtaev, A.S., Heat Transfer During Quenching of High Temperature Surface by the Falling Cryogenic Liquid Film, Int. J. Thermal Sciences, 2017, vol. 114, no. 4, pp. 196–204; doi.org/10.1016/j.ijthermalsci.2016.12.015.CrossRef Starodubtseva, I.P., Pavlenko, A.N., and Surtaev, A.S., Heat Transfer During Quenching of High Temperature Surface by the Falling Cryogenic Liquid Film, Int. J. Thermal Sciences, 2017, vol. 114, no. 4, pp. 196–204; doi.org/10.1016/j.ijthermalsci.2016.12.015.CrossRef
146.
Zurück zum Zitat Starodubtseva, I.P. and Pavlenko, A.N., Quenching by Falling Cryogenic Liquid Film of Extremely Overheated Plate with Structured Capillary-Porous Coating, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 294–302; DOI: 10.1134/S1810232818030049.CrossRef Starodubtseva, I.P. and Pavlenko, A.N., Quenching by Falling Cryogenic Liquid Film of Extremely Overheated Plate with Structured Capillary-Porous Coating, J. Eng. Therm., 2018, vol. 27, no. 3, pp. 294–302; DOI: 10.1134/S1810232818030049.CrossRef
147.
Zurück zum Zitat Chernyavskiy, A.N. and Pavlenko, A.N., Numerical Simulation of Wave Formation and Heat Transfer in Falling Liquid Films on Unsteady Heat Release, J. Eng. Therm., 2020, vol. 29, no. 1, pp.181–185; DOI: 10.1134/S1810232820010130.CrossRef Chernyavskiy, A.N. and Pavlenko, A.N., Numerical Simulation of Wave Formation and Heat Transfer in Falling Liquid Films on Unsteady Heat Release, J. Eng. Therm., 2020, vol. 29, no. 1, pp.181–185; DOI: 10.1134/S1810232820010130.CrossRef
148.
Zurück zum Zitat Kuznetsov, D.V. and Pavlenko, A.N., Effect of Structuring by Deformational Cutting on Heat Transfer and Dynamics of Transient Cooling Processes with Liquid Film Flowing onto a Copper Plate, J. Eng. Therm., 2020, vol. 29, no. 4, pp. 531–541; DOI: 10.1134/S1810232820040013.CrossRef Kuznetsov, D.V. and Pavlenko, A.N., Effect of Structuring by Deformational Cutting on Heat Transfer and Dynamics of Transient Cooling Processes with Liquid Film Flowing onto a Copper Plate, J. Eng. Therm., 2020, vol. 29, no. 4, pp. 531–541; DOI: 10.1134/S1810232820040013.CrossRef
149.
Zurück zum Zitat Starodubtseva, I.P., Kuznetsov, D.V., and Pavlenko, A.N., Experiments and Modeling on Cryogenic Quenching Enhancement by Structured Capillary-Porous Coating of Surface, Int. J. Heat Mass Transfer, 2021, vol. 176, p. 121388; doi.org/10.1016/j.ijheatmasstransfer.2021.121388.CrossRef Starodubtseva, I.P., Kuznetsov, D.V., and Pavlenko, A.N., Experiments and Modeling on Cryogenic Quenching Enhancement by Structured Capillary-Porous Coating of Surface, Int. J. Heat Mass Transfer, 2021, vol. 176, p. 121388; doi.org/10.1016/j.ijheatmasstransfer.2021.121388.CrossRef
150.
Zurück zum Zitat Grigoriev, V.A., Dudkevich, A.S., and Pavlov, Yu.M., Boiling of Cryogenic Liquids in a Thin Film, Voprosy Radioelektr. Ser. Tepl. Rezhimy, Termostat. Okhlazhd. Radioelektr. Apparat., 1970, no. 1, pp. 83–90. Grigoriev, V.A., Dudkevich, A.S., and Pavlov, Yu.M., Boiling of Cryogenic Liquids in a Thin Film, Voprosy Radioelektr. Ser. Tepl. Rezhimy, Termostat. Okhlazhd. Radioelektr. Apparat., 1970, no. 1, pp. 83–90.
151.
Zurück zum Zitat Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectr., Instrumentat. Data Process., 2019, vol. 55, no. 6, pp. 554–563; doi.org/10.3103/ S8756699019060049.ADSCrossRef Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectr., Instrumentat. Data Process., 2019, vol. 55, no. 6, pp. 554–563; doi.org/10.3103/ S8756699019060049.ADSCrossRef
152.
Zurück zum Zitat Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163, pp. 120488-1–120488-14; doi.org/10.1016/j.ijheatmasstransfer.2020.120488.CrossRef Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163, pp. 120488-1–120488-14; doi.org/10.1016/j.ijheatmasstransfer.2020.120488.CrossRef
153.
Zurück zum Zitat Prenger, F.C., Stewart, W.F., and Runyan, J.E., Development of a Cryogenic Heat Pipe, Adv. Cryogenic Eng., 1994, vol. 39, pp. 1707–1714; doi.org/10.1007/978-1-4615-2522-6_209. Prenger, F.C., Stewart, W.F., and Runyan, J.E., Development of a Cryogenic Heat Pipe, Adv. Cryogenic Eng., 1994, vol. 39, pp. 1707–1714; doi.org/10.1007/978-1-4615-2522-6_209.
154.
Zurück zum Zitat Kwon, D.W., Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application to Electromagnetic Formation Flight Satellites, PhD (Aeronautics and Astronautics) Thesis, Massachusetts Institute of Technology, 2009. Kwon, D.W., Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application to Electromagnetic Formation Flight Satellites, PhD (Aeronautics and Astronautics) Thesis, Massachusetts Institute of Technology, 2009.
155.
Zurück zum Zitat Bodla, K.K., Murthy, J.Y., and Garimella, S.V., Evaporation Analysis in Sintered Wick Microstructures, Int. J. Heat Mass Transfer, 2013, vol. 61, pp. 107–121; doi.org/10.1016/j.ijheatmasstransfer.2013.02.038.CrossRef Bodla, K.K., Murthy, J.Y., and Garimella, S.V., Evaporation Analysis in Sintered Wick Microstructures, Int. J. Heat Mass Transfer, 2013, vol. 61, pp. 107–121; doi.org/10.1016/j.ijheatmasstransfer.2013.02.038.CrossRef
156.
Zurück zum Zitat Mehta, B., Soni, M., and Changela, K., Review of Parametric Investigation of Cryogenic Heat Pipe, Int. J. Recent Technol. Engin., 2014, vol. 3, no. 2, pp. 15–19; doi.org/10.35940/ijrte.2277-3878. Mehta, B., Soni, M., and Changela, K., Review of Parametric Investigation of Cryogenic Heat Pipe, Int. J. Recent Technol. Engin., 2014, vol. 3, no. 2, pp. 15–19; doi.org/10.35940/ijrte.2277-3878.
157.
Zurück zum Zitat Maydanik, Y.F., Chernysheva, M.A., and Pastukhov, V.G., Review: Loop Heat Pipes with Fat Evaporators, Appl. Therm. Engin., 2014, vol. 67, pp. 294–307; doi.org/10.1016/j.applthermaleng.2014.03.041.CrossRef Maydanik, Y.F., Chernysheva, M.A., and Pastukhov, V.G., Review: Loop Heat Pipes with Fat Evaporators, Appl. Therm. Engin., 2014, vol. 67, pp. 294–307; doi.org/10.1016/j.applthermaleng.2014.03.041.CrossRef
158.
Zurück zum Zitat Wang, D.D., Liu, Z., He, S., Yang, J., and Liu, W., Operational Characteristics of a Loop Heat Pipe with a Flat Evaporator and Two Primary Biporous Wicks, Int. J. Heat Mass Transfer, 2015, vol. 89, pp. 33–41; doi.org/10.1016/j.ijheatmasstransfer.2015.05.042.CrossRef Wang, D.D., Liu, Z., He, S., Yang, J., and Liu, W., Operational Characteristics of a Loop Heat Pipe with a Flat Evaporator and Two Primary Biporous Wicks, Int. J. Heat Mass Transfer, 2015, vol. 89, pp. 33–41; doi.org/10.1016/j.ijheatmasstransfer.2015.05.042.CrossRef
159.
Zurück zum Zitat Wong, S.C. and Liao, W.S., Visualization Experiments on Flat-Plate Heat Pipes with Composite Mesh-Groove Wick at Different Tilt Angles, Int. J. Heat Mass Transfer, 2018, vol. 123, pp. 839–847; doi.org/ 10.1016/j.ijheatmasstransfer.2018.03.031.CrossRef Wong, S.C. and Liao, W.S., Visualization Experiments on Flat-Plate Heat Pipes with Composite Mesh-Groove Wick at Different Tilt Angles, Int. J. Heat Mass Transfer, 2018, vol. 123, pp. 839–847; doi.org/ 10.1016/j.ijheatmasstransfer.2018.03.031.CrossRef
160.
Zurück zum Zitat Wang, D.D., Wang, J., Bao, X., Chen, G., and Chu, H., Evaporation Heat Transfer Characteristics of Composite Porous Wick with Spherical-Dendritic Powders, Appl. Therm. Engin., 2019, vol. 152, pp. 825–834; doi.org/10.1016/j.applthermaleng.2019.02.126.CrossRef Wang, D.D., Wang, J., Bao, X., Chen, G., and Chu, H., Evaporation Heat Transfer Characteristics of Composite Porous Wick with Spherical-Dendritic Powders, Appl. Therm. Engin., 2019, vol. 152, pp. 825–834; doi.org/10.1016/j.applthermaleng.2019.02.126.CrossRef
161.
Zurück zum Zitat Li, J., Hong, F., Xie, R., and Cheng, P., Pore Scale Simulation of Evaporation in a Porous Wick of a Loop Heat Pipe Flat Evaporator Using Lattice Boltzmann Method, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 22–33; doi.org/10.1016/j.icheatmasstransfer.2019.01.008.CrossRef Li, J., Hong, F., Xie, R., and Cheng, P., Pore Scale Simulation of Evaporation in a Porous Wick of a Loop Heat Pipe Flat Evaporator Using Lattice Boltzmann Method, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 22–33; doi.org/10.1016/j.icheatmasstransfer.2019.01.008.CrossRef
162.
Zurück zum Zitat Odagiri, K. and Nagano, H., Characteristics of Phase-Change Heat Transfer in a Capillary Evaporator Based on Microscale Infrared/Visible Observation, Int. J. Heat Mass Transfer, 2019, vol. 130, pp. 938–945; doi.org/10.1016/j.ijheatmasstransfer.2018.10.139.CrossRef Odagiri, K. and Nagano, H., Characteristics of Phase-Change Heat Transfer in a Capillary Evaporator Based on Microscale Infrared/Visible Observation, Int. J. Heat Mass Transfer, 2019, vol. 130, pp. 938–945; doi.org/10.1016/j.ijheatmasstransfer.2018.10.139.CrossRef
163.
Zurück zum Zitat Odagiri, K. and Nagano, H., Investigation on Liquid-Vapor Interface Behavior in Capillary Evaporator for High Heat Flux Loop Heat Pipe, Int. J. Thermal Sci., 2019, vol. 140, pp. 530–538; doi.org/10.1016/ j.ijthermalsci.2019.03.008.CrossRef Odagiri, K. and Nagano, H., Investigation on Liquid-Vapor Interface Behavior in Capillary Evaporator for High Heat Flux Loop Heat Pipe, Int. J. Thermal Sci., 2019, vol. 140, pp. 530–538; doi.org/10.1016/ j.ijthermalsci.2019.03.008.CrossRef
164.
Zurück zum Zitat Feng, C. and Chandra, S., Evaporation of Ethanol Films Wicking on Structured, Porous Coatings Deposited on Copper Plates, Int. J. Heat Mass Transfer, 2019, vol. 136, pp. 821–831; doi.org/10.1016/ j.ijheatmasstransfer.2019.03.045.CrossRef Feng, C. and Chandra, S., Evaporation of Ethanol Films Wicking on Structured, Porous Coatings Deposited on Copper Plates, Int. J. Heat Mass Transfer, 2019, vol. 136, pp. 821–831; doi.org/10.1016/ j.ijheatmasstransfer.2019.03.045.CrossRef
165.
Zurück zum Zitat Lutset, M.O. and Zhukov, V.Ye., Heat Transfer in a Rotating Cryostat at High Centrifugal Acceleration Fields, Cryogenics, 1989, vol. 29, pp. 37–41; doi.org/10.1007/978-94-010-0099-4_13. Lutset, M.O. and Zhukov, V.Ye., Heat Transfer in a Rotating Cryostat at High Centrifugal Acceleration Fields, Cryogenics, 1989, vol. 29, pp. 37–41; doi.org/10.1007/978-94-010-0099-4_13.
166.
Zurück zum Zitat Klimenko, V.V., Processes of Two-Phase Heat Transfer with Liquid Cryogens (Forced Flow Boiling, Pool Film Boiling) and Development of Optimal Methods for Their Calculation, Abstract of Doct. Sci. (Engineering) Dissertation, Moscow: Moscow State University, Energy Institute, 1984, p. 40. Klimenko, V.V., Processes of Two-Phase Heat Transfer with Liquid Cryogens (Forced Flow Boiling, Pool Film Boiling) and Development of Optimal Methods for Their Calculation, Abstract of Doct. Sci. (Engineering) Dissertation, Moscow: Moscow State University, Energy Institute, 1984, p. 40.
167.
Zurück zum Zitat Klimenko, V.V., Tyodorov, M.V., and Fomichyov, Yu.A., Channel Orientation and Geometry Influence on Heat Transfer with Two-Phase Forced Flow of Nitrogen, Cryogenics, 1989, vol. 29, pp. 31–36; doi.org/10.1016/0011-2275(89)90008-8.ADSCrossRef Klimenko, V.V., Tyodorov, M.V., and Fomichyov, Yu.A., Channel Orientation and Geometry Influence on Heat Transfer with Two-Phase Forced Flow of Nitrogen, Cryogenics, 1989, vol. 29, pp. 31–36; doi.org/10.1016/0011-2275(89)90008-8.ADSCrossRef
168.
Zurück zum Zitat Klimenko, A.V., Sudarchikov, A.M., and Klimenko, V.V., Investigation of the Boiling Crisis of Forced Nitrogen Flow in a Channel at High Pressures, Vestnik MEI, 2005, no. 6, pp. 135–139. Klimenko, A.V., Sudarchikov, A.M., and Klimenko, V.V., Investigation of the Boiling Crisis of Forced Nitrogen Flow in a Channel at High Pressures, Vestnik MEI, 2005, no. 6, pp. 135–139.
169.
Zurück zum Zitat Pavlenko, A.N., Pecherkin, N.I., Chekhovich, V.Yu., Zhukov, V.E., Sander, S., Houghton, P., Nazarov, A.D., and Serov, A.F., The Two-Phase Cocurrent Downflow of Liquid Nitrogen in a Vertical Rectangular Channel, J. Eng. Therm., 2002, vol. 11, no. 4, pp. 321–333. Pavlenko, A.N., Pecherkin, N.I., Chekhovich, V.Yu., Zhukov, V.E., Sander, S., Houghton, P., Nazarov, A.D., and Serov, A.F., The Two-Phase Cocurrent Downflow of Liquid Nitrogen in a Vertical Rectangular Channel, J. Eng. Therm., 2002, vol. 11, no. 4, pp. 321–333.
170.
Zurück zum Zitat Pavlenko, A.N., Pecherkin, N.I., Chekhovich, V.Yu., Zhukov, V.E., Sander, S., Houghton, P., Nazarov, A.D., and Serov, A.F., The Two-Phase Downflow of Liquid Nitrogen in a Vertical Rectangular Channel, Actual Probl. Aviat. Aerospace Syst., 2004, vol. 9, no. 2(18), pp. 56–68. Pavlenko, A.N., Pecherkin, N.I., Chekhovich, V.Yu., Zhukov, V.E., Sander, S., Houghton, P., Nazarov, A.D., and Serov, A.F., The Two-Phase Downflow of Liquid Nitrogen in a Vertical Rectangular Channel, Actual Probl. Aviat. Aerospace Syst., 2004, vol. 9, no. 2(18), pp. 56–68.
171.
Zurück zum Zitat Zhukov, V.M., Anisimov, S.B., and Yarmak, I.L., Experimental Study of Heat Transfer of a Two-Phase Nitrogen Flow under Pulsed Heat Release in a Vertical Channel, in Int. Forum on Heat and Mass Transfer in Two-Phase Systems: Abstracts, Sect. 4, Minsk, 1988, pp. 78–80. Zhukov, V.M., Anisimov, S.B., and Yarmak, I.L., Experimental Study of Heat Transfer of a Two-Phase Nitrogen Flow under Pulsed Heat Release in a Vertical Channel, in Int. Forum on Heat and Mass Transfer in Two-Phase Systems: Abstracts, Sect. 4, Minsk, 1988, pp. 78–80.
172.
Zurück zum Zitat Jackson, J., Liao, J., Klausner, J.F., and Mei, R., Transient Heat Transfer During Cryogenic Chilldown, in Procs. of HT2005 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, rep. HT2005-72145, 2005; doi.org/10.1115/HT2005-72145. Jackson, J., Liao, J., Klausner, J.F., and Mei, R., Transient Heat Transfer During Cryogenic Chilldown, in Procs. of HT2005 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, rep. HT2005-72145, 2005; doi.org/10.1115/HT2005-72145.
173.
Zurück zum Zitat Kuzma-Kichta, Yu., Suzuki, K., Lavrikov, A., Shustov, M., and Sholl, S., Heat Transfer Investigation in the Microchannel with Nanorelief, in Proc. of the 24th Int. Symp. on Transport Phenomena, Yamaguchi, Japan, 2013, p. 29. Kuzma-Kichta, Yu., Suzuki, K., Lavrikov, A., Shustov, M., and Sholl, S., Heat Transfer Investigation in the Microchannel with Nanorelief, in Proc. of the 24th Int. Symp. on Transport Phenomena, Yamaguchi, Japan, 2013, p. 29.
174.
Zurück zum Zitat Shustov, M.V., Kuzma-Kichta, Y.A., and Lavrikov, A.V., Nanoparticle Coating of a Microchannel Surface is an Effective Method for Increasing the Critical Heat Flux, Therm. Eng., 2017, vol. 64, pp. 301–306; doi.org/10.1134/S0040601517040073.ADSCrossRef Shustov, M.V., Kuzma-Kichta, Y.A., and Lavrikov, A.V., Nanoparticle Coating of a Microchannel Surface is an Effective Method for Increasing the Critical Heat Flux, Therm. Eng., 2017, vol. 64, pp. 301–306; doi.org/10.1134/S0040601517040073.ADSCrossRef
Metadaten
Titel
Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices
verfasst von
A. N. Pavlenko
D. V. Kuznetsov
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 4/2021
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821040019

Weitere Artikel der Ausgabe 4/2021

Journal of Engineering Thermophysics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.