Skip to main content
Erschienen in: Journal of Engineering Thermophysics 4/2021

01.10.2021

Heat Transfer Enhancement on Multilayer Wire Mesh Coatings and Wire Mesh Coatings Combined with Other Surface Modifications—A Review

verfasst von: O. A. Volodin, A. N. Pavlenko, N. I. Pecherkin

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents an overview of experimental studies on the influence of mesh coatings of heat-releasing elements on heat transfer enhancement under various conditions: pool boiling of liquid, evaporation and boiling in thin horizontal layers of liquid, in falling films of liquid, and in flows in channels. Studies on the topic are discussed in detail, from key works with mesh coatings to latter-day research using gradient mesh coatings, combinations of mesh coating with other kinds of modifications, or application of additive manufacturing (3D printing). Models that have been developed specifically for mesh coatings for calculation of the heat transfer coefficient and critical heat flux and are available in the literature are presented. The heat transfer intensification data obtained for the considered mesh coatings are compared with data for up-to-date highly efficient micro—nano-structured surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Except for the achieved sevenfold enhancement at boiling in thin layers of water in [6], but only at low heat fluxes.
 
2
That is, only via change in the structure of the heat-transfer surface.
 
3
First of all, we mean studies with mesh coatings tightly adjacent to a heat-releasing wall, numerous studies on the application of metallic meshes for making wicks of heat pipes almost unaffected.
 
4
Hereinafter, besides its direct meaning, mesh is used as the mesh number, i.e., the number of openings per linear inch of mesh.
 
5
Distance between the wires.
 
6
It was decided to leave the works using surface roughening in addition to mesh coatings [6, 32] in this paragraph without transferring them to paragraph 2.2, where more complicated combined coatings are discussed.
 
7
As it was previously done by the authors of [29].
 
8
In this case, the aperture will be 1 mm, which coincides with the bubble departure diameter for water boiling.
 
9
It should be understood that the record heat transfer results obtained on prototypes of enhancing surfaces [48, 49, etc.] still need further verification and validation, just as highly effective combined surfaces need testing for stability of thermophysical and chemical properties and adaptation for industrial use.
 
Literatur
1.
Zurück zum Zitat Heat Transfer Handbook, vol. 1, Bejan, A. and Kraus, A.D., Eds., John Wiley & Sons, 2003. Heat Transfer Handbook, vol. 1, Bejan, A. and Kraus, A.D., Eds., John Wiley & Sons, 2003.
2.
Zurück zum Zitat Zhang, S., Jiang, X., Li, Y., Chen, G., Sun, Y., Tang, Y., and Pan, C., Extraordinary Boiling Enhancement Through Micro-Chimney Effects in Gradient Porous Micromeshes for High-Power Applications, Energy Convers. Manag., 2020, vol. 209, p. 112665.CrossRef Zhang, S., Jiang, X., Li, Y., Chen, G., Sun, Y., Tang, Y., and Pan, C., Extraordinary Boiling Enhancement Through Micro-Chimney Effects in Gradient Porous Micromeshes for High-Power Applications, Energy Convers. Manag., 2020, vol. 209, p. 112665.CrossRef
3.
Zurück zum Zitat Mori, S. and Utaka, Y., Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2534–2557.CrossRef Mori, S. and Utaka, Y., Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2534–2557.CrossRef
4.
Zurück zum Zitat Li, C., Peterson, G.P., and Wang, Y., Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects, ASME J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1312–1319.CrossRef Li, C., Peterson, G.P., and Wang, Y., Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects, ASME J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1312–1319.CrossRef
5.
Zurück zum Zitat Sloan, A., Penley, S., and Wirtz, R.A., Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface, in Procs. of 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009, pp. 246–253. Sloan, A., Penley, S., and Wirtz, R.A., Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface, in Procs. of 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009, pp. 246–253.
6.
Zurück zum Zitat Tsay, J.Y., Yan, Y.Y., and Lin, T.F., Enhancement of Pool Boiling Heat Transfer in a Horizontal Water Layer Through Surface Roughness and Screen Coverage, Heat Mass Transfer, 1996, vol. 32, no. 1, pp. 17–26.ADSCrossRef Tsay, J.Y., Yan, Y.Y., and Lin, T.F., Enhancement of Pool Boiling Heat Transfer in a Horizontal Water Layer Through Surface Roughness and Screen Coverage, Heat Mass Transfer, 1996, vol. 32, no. 1, pp. 17–26.ADSCrossRef
7.
Zurück zum Zitat Gerlach, D.W. and Joshi, Y.K., Boiling Performance of Flourinert PF 5060 on Confined and Unconfined Wire Meshes Soldered to the Substrate, Procs. of ASME Int. Mechanical Engineering Congress and Exposition, 2005, vol. 42215, pp. 807–811. Gerlach, D.W. and Joshi, Y.K., Boiling Performance of Flourinert PF 5060 on Confined and Unconfined Wire Meshes Soldered to the Substrate, Procs. of ASME Int. Mechanical Engineering Congress and Exposition, 2005, vol. 42215, pp. 807–811.
8.
Zurück zum Zitat Liu, J.W., Lee, D.J., and Su, A., Boiling of Methanol and HFE-7100 on Heated Surface Covered with a Layer of Mesh, Int. J. Heat Mass Transfer, 2001, vol. 44, no. 1, pp. 241–246.CrossRef Liu, J.W., Lee, D.J., and Su, A., Boiling of Methanol and HFE-7100 on Heated Surface Covered with a Layer of Mesh, Int. J. Heat Mass Transfer, 2001, vol. 44, no. 1, pp. 241–246.CrossRef
9.
Zurück zum Zitat Dąbek, L., Kapjor, A. and Orman, Ł.J., Distilled Water and Ethyl Alcohol Boiling Heat Transfer on Selected Meshed Surfaces, Mech. Industry, 2019, vol. 20, no. 7, p. 701.ADSCrossRef Dąbek, L., Kapjor, A. and Orman, Ł.J., Distilled Water and Ethyl Alcohol Boiling Heat Transfer on Selected Meshed Surfaces, Mech. Industry, 2019, vol. 20, no. 7, p. 701.ADSCrossRef
10.
Zurück zum Zitat Pastuszko, R., Pool Boiling on Micro-Fin Array with Wire Mesh Structures, Int. J. Thermal Sci., 2010, vol. 49, no. 12, pp. 2289–2298.CrossRef Pastuszko, R., Pool Boiling on Micro-Fin Array with Wire Mesh Structures, Int. J. Thermal Sci., 2010, vol. 49, no. 12, pp. 2289–2298.CrossRef
11.
Zurück zum Zitat Chien, L.H. and Tsai, Y.L., An Experimental Study of Pool Boiling and Falling Film Vaporization on Horizontal Tubes in R-245fa, Appl. Thermal Engin., 2011, vol. 31, nos. 17/18, pp. 4044–4054.CrossRef Chien, L.H. and Tsai, Y.L., An Experimental Study of Pool Boiling and Falling Film Vaporization on Horizontal Tubes in R-245fa, Appl. Thermal Engin., 2011, vol. 31, nos. 17/18, pp. 4044–4054.CrossRef
12.
Zurück zum Zitat Chien, L.H. and Hwang, H.L., An Experimental Study of Boiling Heat Transfer Enhancement of Mesh-on-Fin Tubes, J. Enhanced Heat Transfer, 2012, vol. 19, no. 1, pp. 75–86.CrossRef Chien, L.H. and Hwang, H.L., An Experimental Study of Boiling Heat Transfer Enhancement of Mesh-on-Fin Tubes, J. Enhanced Heat Transfer, 2012, vol. 19, no. 1, pp. 75–86.CrossRef
13.
Zurück zum Zitat Kim, H., Park, Y., Kim, H., Lee, C., Jerng, D.W., and Kim, D.E., Critical Heat Flux Enhancement by Single-Layered Metal Wire Mesh with Micro and Nano-Sized Pore Structures, Int. J. Heat Mass Transfer, 2017, vol. 115, pp. 439–449.CrossRef Kim, H., Park, Y., Kim, H., Lee, C., Jerng, D.W., and Kim, D.E., Critical Heat Flux Enhancement by Single-Layered Metal Wire Mesh with Micro and Nano-Sized Pore Structures, Int. J. Heat Mass Transfer, 2017, vol. 115, pp. 439–449.CrossRef
14.
Zurück zum Zitat Huang, S., Wang, L., Pan, Z., and Zhou, Z., Experimental Investigation of a New Hybrid Structured Surface for Subcooled Flow Boiling Heat Transfer Enhancement, Appl. Thermal Engin., 2021, vol. 192, p. 116929.CrossRef Huang, S., Wang, L., Pan, Z., and Zhou, Z., Experimental Investigation of a New Hybrid Structured Surface for Subcooled Flow Boiling Heat Transfer Enhancement, Appl. Thermal Engin., 2021, vol. 192, p. 116929.CrossRef
15.
Zurück zum Zitat Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933.CrossRef Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933.CrossRef
16.
Zurück zum Zitat Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, pp. 280–312.CrossRef Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, pp. 280–312.CrossRef
17.
Zurück zum Zitat McCarthy, M., Gerasopoulos, K., Maroo, S.C., and Hart, A.J., Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement, Nanoscale Microscale Thermophys. Engin., 2014, vol. 18, pp. 288–310.ADSCrossRef McCarthy, M., Gerasopoulos, K., Maroo, S.C., and Hart, A.J., Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement, Nanoscale Microscale Thermophys. Engin., 2014, vol. 18, pp. 288–310.ADSCrossRef
18.
Zurück zum Zitat Kempers, R., Ewing, D., and Ching, C.Y., Effect of Number of Mesh Layers and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipes, Appl. Thermal Engin., 2006, vol. 26, nos. 5/6, pp. 589–595.CrossRef Kempers, R., Ewing, D., and Ching, C.Y., Effect of Number of Mesh Layers and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipes, Appl. Thermal Engin., 2006, vol. 26, nos. 5/6, pp. 589–595.CrossRef
19.
Zurück zum Zitat Salvagnini, W.M. and Taqueda M.E.S., A Falling-Film Evaporator with Film Promoters, Ind. Engin. Chem. Res., 2004, vol. 43, no. 21, pp. 6832–6835.CrossRef Salvagnini, W.M. and Taqueda M.E.S., A Falling-Film Evaporator with Film Promoters, Ind. Engin. Chem. Res., 2004, vol. 43, no. 21, pp. 6832–6835.CrossRef
20.
Zurück zum Zitat Åkesjö, A., Gourdon, M., Vamling, L., Innings, F., and Sasic, S., Modified Surfaces to Enhance Vertical Falling Film Heat Transfer—An Experimental and Numerical Study, Int. J. Heat Mass Transfer, 2019, vol. 131, pp. 237–251.CrossRef Åkesjö, A., Gourdon, M., Vamling, L., Innings, F., and Sasic, S., Modified Surfaces to Enhance Vertical Falling Film Heat Transfer—An Experimental and Numerical Study, Int. J. Heat Mass Transfer, 2019, vol. 131, pp. 237–251.CrossRef
21.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling Down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158.CrossRef Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Heat Transfer and Critical Heat Flux at Evaporation and Boiling in Refrigerant Mixture Films Falling Down the Tube with Structured Surfaces, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 149–158.CrossRef
22.
Zurück zum Zitat Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., The Influence of the Surface Structuring Type on Heat Transfer in Falling Films of the Refrigerant Mixture, J. Phys.: Conf. Ser., 2019, vol. 1369, no. 1, p. 012046. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., The Influence of the Surface Structuring Type on Heat Transfer in Falling Films of the Refrigerant Mixture, J. Phys.: Conf. Ser., 2019, vol. 1369, no. 1, p. 012046.
23.
Zurück zum Zitat Yao, Y., Pavlenko, A.N., and Volodin, O.A., Effects of Layers and Holes on Performance of Wire Mesh Packing, J. Eng. Therm., 2015, vol. 24, no. 3, pp. 222–236.CrossRef Yao, Y., Pavlenko, A.N., and Volodin, O.A., Effects of Layers and Holes on Performance of Wire Mesh Packing, J. Eng. Therm., 2015, vol. 24, no. 3, pp. 222–236.CrossRef
24.
Zurück zum Zitat Franco, A., Latrofa, E.M., and Yagov, V.V., Heat Transfer Enhancement in Pool Boiling of a Refrigerant Fluid with Wire Nets Structures, Exp. Thermal Fluid Sci., 2006, vol. 30, no. 3, pp. 263–275.CrossRef Franco, A., Latrofa, E.M., and Yagov, V.V., Heat Transfer Enhancement in Pool Boiling of a Refrigerant Fluid with Wire Nets Structures, Exp. Thermal Fluid Sci., 2006, vol. 30, no. 3, pp. 263–275.CrossRef
25.
Zurück zum Zitat Hasegawa, S., Echigo, R., and Irie, S., Boiling Characteristics and Burnout Phenomena on Heating Surface Covered with Woven Screens, J. Nuclear Sci. Technol., 1975, vol. 12, no. 11, pp. 722–724.CrossRef Hasegawa, S., Echigo, R., and Irie, S., Boiling Characteristics and Burnout Phenomena on Heating Surface Covered with Woven Screens, J. Nuclear Sci. Technol., 1975, vol. 12, no. 11, pp. 722–724.CrossRef
26.
Zurück zum Zitat Ament, D.L., Boiling Heat Transfer in Thin Liquid Films with a Wire Mesh Screen on the Liquid Surface, PhD thesis, Georgia Institute of Technology, 1994. Ament, D.L., Boiling Heat Transfer in Thin Liquid Films with a Wire Mesh Screen on the Liquid Surface, PhD thesis, Georgia Institute of Technology, 1994.
27.
Zurück zum Zitat Tolubinskiy, V.I., Antonenko, V.A., and Ivanenko, G.V., Crisis Phenomena in Boiling on Submerged Wire Mesh-Wrapped Wall, Heat Transfer–Soviet Res., 1989, vol. 21, pp. 531–535. Tolubinskiy, V.I., Antonenko, V.A., and Ivanenko, G.V., Crisis Phenomena in Boiling on Submerged Wire Mesh-Wrapped Wall, Heat Transfer–Soviet Res., 1989, vol. 21, pp. 531–535.
28.
Zurück zum Zitat Afanas’ev, B.A., Vinogradova, E.P., and Smirnov, G.F., Crisis Phenomena Upon Evaporation in Grid Capillary and Porous Coatings and Arterial Structures of Heat Pipes, J. Engin. Phys., 1985, vol. 49, pp. 1185–1191.ADSCrossRef Afanas’ev, B.A., Vinogradova, E.P., and Smirnov, G.F., Crisis Phenomena Upon Evaporation in Grid Capillary and Porous Coatings and Arterial Structures of Heat Pipes, J. Engin. Phys., 1985, vol. 49, pp. 1185–1191.ADSCrossRef
29.
Zurück zum Zitat Asakavičius, J.P., Zukauskas, A.A., Gaigalis, V.A., and Eva, V.K., Heat Transfer from Freon-113, Ethyl Alcohol and Water with Screen Wicks, Heat Transfer–Soviet Res., 1979, vol. 11, pp. 92–100. Asakavičius, J.P., Zukauskas, A.A., Gaigalis, V.A., and Eva, V.K., Heat Transfer from Freon-113, Ethyl Alcohol and Water with Screen Wicks, Heat Transfer–Soviet Res., 1979, vol. 11, pp. 92–100.
30.
Zurück zum Zitat Labuntsov, D.A., Heat Exchange during Nucleate Boiling of Liquids, Teploenergetika, 1959, vol. 12, pp. 19–25. Labuntsov, D.A., Heat Exchange during Nucleate Boiling of Liquids, Teploenergetika, 1959, vol. 12, pp. 19–25.
31.
Zurück zum Zitat Rannenberg, M. and Beer, H., Heat Transfer by Evaporation in Capillary Porous Wire Mesh Structures, Lett. Heat Mass Transfer, 1980, vol. 7, no. 6, pp. 425–436.CrossRef Rannenberg, M. and Beer, H., Heat Transfer by Evaporation in Capillary Porous Wire Mesh Structures, Lett. Heat Mass Transfer, 1980, vol. 7, no. 6, pp. 425–436.CrossRef
32.
Zurück zum Zitat Brautsch, A. and Kew, P.A., The Effect of Surface Conditions on Boiling Heat Transfer from Mesh Wicks, Int. Heat Transfer Conf. Digital Library, Begel House, 2002. Brautsch, A. and Kew, P.A., The Effect of Surface Conditions on Boiling Heat Transfer from Mesh Wicks, Int. Heat Transfer Conf. Digital Library, Begel House, 2002.
33.
Zurück zum Zitat Ghiu, C.D. and Joshi, Y.K., Boiling Performance of Single-Layered Enhanced Structures, ASME J. Heat Transfer, 2005, vol. 127, no. 7, pp. 675–683.CrossRef Ghiu, C.D. and Joshi, Y.K., Boiling Performance of Single-Layered Enhanced Structures, ASME J. Heat Transfer, 2005, vol. 127, no. 7, pp. 675–683.CrossRef
34.
Zurück zum Zitat Li, C. and Peterson, G.P., Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size, ASME J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1320–1328.CrossRef Li, C. and Peterson, G.P., Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size, ASME J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1320–1328.CrossRef
35.
Zurück zum Zitat Li, C. and Peterson, G.P., Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces, ASME J. Heat Transfer, 2007, vol. 129, no. 11, pp. 1465–1475.CrossRef Li, C. and Peterson, G.P., Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces, ASME J. Heat Transfer, 2007, vol. 129, no. 11, pp. 1465–1475.CrossRef
36.
Zurück zum Zitat Orman, Ł.J., Boiling Heat Transfer on Single Phosphor Bronze and Copper Mesh Microstructures, EPJ Web Conf., 2014, vol. 67, p. 02087. Orman, Ł.J., Boiling Heat Transfer on Single Phosphor Bronze and Copper Mesh Microstructures, EPJ Web Conf., 2014, vol. 67, p. 02087.
37.
Zurück zum Zitat Dąbek, L., Kapjor, A., and Orman Ł.J., Ethyl Alcohol Boiling Heat Transfer on Multilayer Meshed Surfaces, AIP Conf. Procs., 2016, vol. 1745, no. 1, p. 020005. Dąbek, L., Kapjor, A., and Orman Ł.J., Ethyl Alcohol Boiling Heat Transfer on Multilayer Meshed Surfaces, AIP Conf. Procs., 2016, vol. 1745, no. 1, p. 020005.
38.
Zurück zum Zitat Xin, M.D. and Chao, Y.D., Analysis and Experiment of Boiling Heat Transfer on T-Shaped Finned Surfaces, Chem. Eng. Commun., 1987, vol. 50, nos. 1–6, pp. 185–199.CrossRef Xin, M.D. and Chao, Y.D., Analysis and Experiment of Boiling Heat Transfer on T-Shaped Finned Surfaces, Chem. Eng. Commun., 1987, vol. 50, nos. 1–6, pp. 185–199.CrossRef
39.
Zurück zum Zitat Nishikawa, K., Ito, T., and Tanaka, K., Enhanced Heat Transfer by Nucleate Boiling on a Sintered Metal Layer, Heat Trans. Jpn. Res., 1979, vol. 8, pp. 65–81. Nishikawa, K., Ito, T., and Tanaka, K., Enhanced Heat Transfer by Nucleate Boiling on a Sintered Metal Layer, Heat Trans. Jpn. Res., 1979, vol. 8, pp. 65–81.
40.
Zurück zum Zitat Smirnov, G.F. and Afanasiev, B.A., Investigation of Vaporization in Screen Wick-Capillary Structures, in Procs. of VI Int. Heat Pipe Conf. Advances in Heat Pipe Technology, London, United Kingdom, 1982. Smirnov, G.F. and Afanasiev, B.A., Investigation of Vaporization in Screen Wick-Capillary Structures, in Procs. of VI Int. Heat Pipe Conf. Advances in Heat Pipe Technology, London, United Kingdom, 1982.
41.
Zurück zum Zitat Orman, Ł.J., Correlation for Nucleate Boiling Heat Transfer on Microstructural Coatings, in Procs. of the 3rd World Congress on Momentum, Heat and Mass Transfer (MHMT’18), Budapest, Hungary, 2018, p. ICMFTH 117; DOI: 10.11159/icmfht18.117. Orman, Ł.J., Correlation for Nucleate Boiling Heat Transfer on Microstructural Coatings, in Procs. of the 3rd World Congress on Momentum, Heat and Mass Transfer (MHMT’18), Budapest, Hungary, 2018, p. ICMFTH 117; DOI: 10.11159/icmfht18.117.
42.
Zurück zum Zitat Yamaguchi, H. and James, D.D., Effect of Wire Meshes on Boiling Heat Transfer from a Plane Heating Surfaces, in Procs. of I World Conf. ‘Experimental Heat Transfer, Fluid Mechanics and Thermodynamics’, Dubrovnik, 1988, pp. 587–594. Yamaguchi, H. and James, D.D., Effect of Wire Meshes on Boiling Heat Transfer from a Plane Heating Surfaces, in Procs. of I World Conf. ‘Experimental Heat Transfer, Fluid Mechanics and Thermodynamics’, Dubrovnik, 1988, pp. 587–594.
43.
Zurück zum Zitat Orman, Ł.J., Radek, N., Pietraszek, J., and Gontarski, D., Discussion of the Heat Flux Calculation Method during Pool Boiling on Meshed Heaters, System Safety: Human-Technical Facility-Environment, 2020, vol. 2, no. 1, pp. 247–252. Orman, Ł.J., Radek, N., Pietraszek, J., and Gontarski, D., Discussion of the Heat Flux Calculation Method during Pool Boiling on Meshed Heaters, System Safety: Human-Technical Facility-Environment, 2020, vol. 2, no. 1, pp. 247–252.
44.
Zurück zum Zitat Zhang, C., Zhang, L., Xu, H., Li, P., and Qian, B., Performance of Pool Boiling with 3D Grid Structure Manufactured by Selective Laser Melting Technique, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 570–580.CrossRef Zhang, C., Zhang, L., Xu, H., Li, P., and Qian, B., Performance of Pool Boiling with 3D Grid Structure Manufactured by Selective Laser Melting Technique, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 570–580.CrossRef
45.
Zurück zum Zitat Pastuszko, R., Pool Boiling Heat Transfer on Micro-Fins with Wire Mesh—Experiments and Heat Flux Prediction, Int. J. Thermal Sci., 2018, vol. 125, pp. 197–209.CrossRef Pastuszko, R., Pool Boiling Heat Transfer on Micro-Fins with Wire Mesh—Experiments and Heat Flux Prediction, Int. J. Thermal Sci., 2018, vol. 125, pp. 197–209.CrossRef
46.
Zurück zum Zitat Pastuszko, R., Kaniowski, R., and Wójcik, T.M., Comparison of Pool Boiling Performance for Plain Micro-Fins and Micro-Fins with a Porous Layer, Appl. Thermal Engin., 2020, vol. 166, p. 114658.CrossRef Pastuszko, R., Kaniowski, R., and Wójcik, T.M., Comparison of Pool Boiling Performance for Plain Micro-Fins and Micro-Fins with a Porous Layer, Appl. Thermal Engin., 2020, vol. 166, p. 114658.CrossRef
47.
Zurück zum Zitat Chien, L.H. and Webb, R.L., A Nucleate Boiling Model for Structured Enhanced Surfaces, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 14, pp. 2183–2195.MATHCrossRef Chien, L.H. and Webb, R.L., A Nucleate Boiling Model for Structured Enhanced Surfaces, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 14, pp. 2183–2195.MATHCrossRef
48.
Zurück zum Zitat Jaikumar, A. and Kandlikar, S.G., Ultra-High Pool Boiling Performance and Effect of Channel Width with Selectively Coated Open Microchannels, Int. J. Heat Mass Transfer, 2016, vol. 95. pp. 795–805.CrossRef Jaikumar, A. and Kandlikar, S.G., Ultra-High Pool Boiling Performance and Effect of Channel Width with Selectively Coated Open Microchannels, Int. J. Heat Mass Transfer, 2016, vol. 95. pp. 795–805.CrossRef
49.
Zurück zum Zitat Bai, L., Zhang, L., Lin, G., and Peterson, G.P., Pool Boiling with High Heat Flux Enabled by a Porous Artery Structure, Appl. Phys. Lett., 2016, vol. 108, no. 23, p. 233901.ADSCrossRef Bai, L., Zhang, L., Lin, G., and Peterson, G.P., Pool Boiling with High Heat Flux Enabled by a Porous Artery Structure, Appl. Phys. Lett., 2016, vol. 108, no. 23, p. 233901.ADSCrossRef
50.
Zurück zum Zitat Motezakker, A.R., Sadaghiani, A.K., Çelik, S., Larsen, T., Villanueva, L.G., and Koşar, A., Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling, Int. J. Heat Mass Transfer, 2019, vol. 135, pp. 164–174.CrossRef Motezakker, A.R., Sadaghiani, A.K., Çelik, S., Larsen, T., Villanueva, L.G., and Koşar, A., Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling, Int. J. Heat Mass Transfer, 2019, vol. 135, pp. 164–174.CrossRef
51.
Zurück zum Zitat Može, M., Zupančič, M., and Golobič, I., Pattern Geometry Optimization on Superbiphilic Aluminum Surfaces for Enhanced Pool Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2020, vol. 161, p. 120265.CrossRef Može, M., Zupančič, M., and Golobič, I., Pattern Geometry Optimization on Superbiphilic Aluminum Surfaces for Enhanced Pool Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2020, vol. 161, p. 120265.CrossRef
52.
Zurück zum Zitat Zou, A., Singh, D.P., and Maroo, S.C., Early Evaporation of Microlayer for Boiling Heat Transfer Enhancement, Langmuir, 2016, vol. 32, no. 42, pp. 10808–10814.CrossRef Zou, A., Singh, D.P., and Maroo, S.C., Early Evaporation of Microlayer for Boiling Heat Transfer Enhancement, Langmuir, 2016, vol. 32, no. 42, pp. 10808–10814.CrossRef
53.
Zurück zum Zitat Shchelchkov, A.V., Popov, I.A., and Zubkov, N.N., Boiling of a Liquid on Microstructured Surfaces under Free-Convection Conditions, J. Eng. Phys. Thermophys., 2016, vol. 89, no. 5, pp. 1152–1160.ADSCrossRef Shchelchkov, A.V., Popov, I.A., and Zubkov, N.N., Boiling of a Liquid on Microstructured Surfaces under Free-Convection Conditions, J. Eng. Phys. Thermophys., 2016, vol. 89, no. 5, pp. 1152–1160.ADSCrossRef
54.
Zurück zum Zitat Volodin, O., Pecherkin, N., Pavlenko, A., and Zubkov, N., Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids, Int. J. Heat Mass Transfer, 2020, vol. 155, p. 119722.CrossRef Volodin, O., Pecherkin, N., Pavlenko, A., and Zubkov, N., Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids, Int. J. Heat Mass Transfer, 2020, vol. 155, p. 119722.CrossRef
55.
Zurück zum Zitat Jun, S., Wi, H., Gurung, A., Amaya, M., and You, S.M., Pool Boiling Heat Transfer Enhancement of Water Using Brazed Copper Microporous Coatings, ASME J. Heat Transfer, 2016, vol. 138, no. 7, p. 071502.CrossRef Jun, S., Wi, H., Gurung, A., Amaya, M., and You, S.M., Pool Boiling Heat Transfer Enhancement of Water Using Brazed Copper Microporous Coatings, ASME J. Heat Transfer, 2016, vol. 138, no. 7, p. 071502.CrossRef
56.
Zurück zum Zitat Kutateladze, S.S., A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection, Izv. Akad. Nauk, Otd. Tekh. Nauk, 1951, vol. 4, pp. 529–536. Kutateladze, S.S., A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection, Izv. Akad. Nauk, Otd. Tekh. Nauk, 1951, vol. 4, pp. 529–536.
57.
Zurück zum Zitat Zuber, N., Hydrodynamic Aspects of Boiling Heat Transfer, PhD thesis, United States Atomic Energy Commission, Technical Information Service, 1959. Zuber, N., Hydrodynamic Aspects of Boiling Heat Transfer, PhD thesis, United States Atomic Energy Commission, Technical Information Service, 1959.
58.
Zurück zum Zitat Kutateladze, S.S., Fundamentals of Heat Transfer, New York: Academic Press, 1963.MATH Kutateladze, S.S., Fundamentals of Heat Transfer, New York: Academic Press, 1963.MATH
59.
Zurück zum Zitat Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63.CrossRef Wong, K.K. and Leong, K.C., Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 46–63.CrossRef
Metadaten
Titel
Heat Transfer Enhancement on Multilayer Wire Mesh Coatings and Wire Mesh Coatings Combined with Other Surface Modifications—A Review
verfasst von
O. A. Volodin
A. N. Pavlenko
N. I. Pecherkin
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 4/2021
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821040020

Weitere Artikel der Ausgabe 4/2021

Journal of Engineering Thermophysics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.