Skip to main content
Top
Published in: Physics of Metals and Metallography 7/2019

01-07-2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Evolution of Microstructure during Welding Simulation of Boron Modified P91 Steel

Authors: Modassir Akhtar, Akhil Khajuria, V. S. Kumar, R. K. Gupta, Shaju K. Albert

Published in: Physics of Metals and Metallography | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Formation of heat affected zone (HAZ) when welding is considered as weakest link across transition joint. Characterization of this zone is a key issue to reduce the effect of embrittlement; hence appropriate welding parameters were adopted. In the present study, HAZ simulation was done for boron modified P91 steel using Gleeble. It has been observed that matrix was martensitic in nature for coarse-grain HAZ (CGHAZ)/fine-grain HAZ (FGHAZ) whereas for inter-critical HAZ (ICHAZ), matrix was ferrite + martensite containing primary carbides. The size and fraction of carbides varied with peak temperature. Presence of boron influenced the microstructural characteristics of different zones by influencing precipitation nature and fractional characteristic of phases. Substantial variation in hardness was obtained before and after post-weld heat treatment (PWHT). In this respect, simulated samples exhibited maximum hardness at CGHAZ and after PWHT the same region showed minimum hardness. Short-term impression creep testing of simulated sub-HAZs was done, which revealed embrittling effect in ICHAZ, whereas embrittlement shifted to CGHAZ after PWHT. Based on conventional nomenclature for weldment failures, it is confirmed that PWHT shifted type-IV failure (ICHAZ) to type-III failure (CGHAZ) in boron modified P91 steel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Goswami, “P(T) 91 steel—A review of current code and fabrication practices,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 6th (La Fonda, USA, (2010), pp. 762–786. P. Goswami, “P(T) 91 steel—A review of current code and fabrication practices,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 6th (La Fonda, USA, (2010), pp. 762–786.
2.
go back to reference K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S. L. Mannan, “Characterization of microstructures across the heat-affected zone of the modified 9Cr–1Mo weld joint to understand its role in promoting type IV cracking,” Metall. Mater. Trans. A 38, 58–68 (2007).CrossRef K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S. L. Mannan, “Characterization of microstructures across the heat-affected zone of the modified 9Cr–1Mo weld joint to understand its role in promoting type IV cracking,” Metall. Mater. Trans. A 38, 58–68 (2007).CrossRef
3.
go back to reference A. E. Fedoseeva, P. A. Kozlov, V. A. Dudko, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C,” Phys. Met. Metallogr. 116, 1047–1056 (2015).CrossRef A. E. Fedoseeva, P. A. Kozlov, V. A. Dudko, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C,” Phys. Met. Metallogr. 116, 1047–1056 (2015).CrossRef
4.
go back to reference S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, “Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel,” Sci. Technol. Weld. Joining 10, 149–157 (2005).CrossRef S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, “Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel,” Sci. Technol. Weld. Joining 10, 149–157 (2005).CrossRef
5.
go back to reference Y. Wang and L. Li, “Microstructure evolution of fine-grained heat affected zone in type IV failure of P91 welds,” Weld. J. 95, 27–36 (2016). Y. Wang and L. Li, “Microstructure evolution of fine-grained heat affected zone in type IV failure of P91 welds,” Weld. J. 95, 27–36 (2016).
6.
go back to reference Ya. E. Shakhova, A. N. Belyakov, and R. O. Kaibyshev, “Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr,” Phys. Met. Metallogr. 117, 378–389 (2016).CrossRef Ya. E. Shakhova, A. N. Belyakov, and R. O. Kaibyshev, “Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr,” Phys. Met. Metallogr. 117, 378–389 (2016).CrossRef
7.
go back to reference F. Abe, “Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants,” Sci. Technol. Adv. Mater. 9, 1–15 (2008).CrossRef F. Abe, “Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants,” Sci. Technol. Adv. Mater. 9, 1–15 (2008).CrossRef
8.
go back to reference F. Abe, M. Tabuchi, S. Tsukamoto, and Y. Liu, “Alloy design of tempered martensitic 9Cr-boron steel for A‑USC boilers,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 7th (Waikoloa, Hawaii, 2013), pp. 1127–1138. F. Abe, M. Tabuchi, S. Tsukamoto, and Y. Liu, “Alloy design of tempered martensitic 9Cr-boron steel for A‑USC boilers,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 7th (Waikoloa, Hawaii, 2013), pp. 1127–1138.
9.
go back to reference V. A. Dudko, A. E. Fedoseeva, A. N. Belyakov, and R. O. Kaibyshev, “Influence of the carbon content on the phase composition and mechanical properties of P92-type steel,” Phys. Met. Metallogr. 116, 1165–1174 (2015).CrossRef V. A. Dudko, A. E. Fedoseeva, A. N. Belyakov, and R. O. Kaibyshev, “Influence of the carbon content on the phase composition and mechanical properties of P92-type steel,” Phys. Met. Metallogr. 116, 1165–1174 (2015).CrossRef
10.
go back to reference M. Akhtar, “Metallurgical characterisation of simulated heat affected zone in boron modified P91 steel,” M. Tech. Dissertation (National Institute of Technology, Warangal, 2017). M. Akhtar, “Metallurgical characterisation of simulated heat affected zone in boron modified P91 steel,” M. Tech. Dissertation (National Institute of Technology, Warangal, 2017).
11.
go back to reference S. Samsiah, “Structure of properties of the heat affected zone of P91 creep resistant steel,” PhD Dissertation (University of Wollongong, Australia, 2007). S. Samsiah, “Structure of properties of the heat affected zone of P91 creep resistant steel,” PhD Dissertation (University of Wollongong, Australia, 2007).
12.
go back to reference F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto, “Suppression of type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition,” Int. J. Pressure Vessels Piping 84, 44–52 (2007).CrossRef F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto, “Suppression of type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition,” Int. J. Pressure Vessels Piping 84, 44–52 (2007).CrossRef
13.
go back to reference M. Lomozik and A. Zienlinska-Lipiec, “Microscopic analysis of the influence of multiple thermal cycles on simulated HAZ toughness in P91 steel,” Arch. Metall. Mater. 53, 1025–1034 (2008). M. Lomozik and A. Zienlinska-Lipiec, “Microscopic analysis of the influence of multiple thermal cycles on simulated HAZ toughness in P91 steel,” Arch. Metall. Mater. 53, 1025–1034 (2008).
14.
go back to reference M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol, and M. Dammak, “Characterization of mechanically alloyed nanocrystalline Fe(Al): Crystallite size and dislocation density,” J. Nanomater. 2010, 82 (2010).CrossRef M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol, and M. Dammak, “Characterization of mechanically alloyed nanocrystalline Fe(Al): Crystallite size and dislocation density,” J. Nanomater. 2010, 82 (2010).CrossRef
15.
go back to reference Z. Nishiyama, Martensitic Transformation, Ed. by M. E. Fine, M. Meshii, and C. M. Wayman (Academic Press, New York, 1978). Z. Nishiyama, Martensitic Transformation, Ed. by M. E. Fine, M. Meshii, and C. M. Wayman (Academic Press, New York, 1978).
16.
go back to reference F. Yang and J. C.M. Li, “Impression test—A review,” Mater. Sci. Eng., R 74, 233–253 (2013). F. Yang and J. C.M. Li, “Impression test—A review,” Mater. Sci. Eng., R 74, 233–253 (2013).
17.
go back to reference N. V. D. Vijayanand, V. Ganesan, K. Laha, and M. D. Mathew, “Evaluation of creep deformation behavior of different microsrtuctural zones of 316LN SS weld joint using impression creep testing technique,” Mater. Sci. Technol. 30, 1223–1228 (2014).CrossRef N. V. D. Vijayanand, V. Ganesan, K. Laha, and M. D. Mathew, “Evaluation of creep deformation behavior of different microsrtuctural zones of 316LN SS weld joint using impression creep testing technique,” Mater. Sci. Technol. 30, 1223–1228 (2014).CrossRef
18.
go back to reference A. Khajuria, M. Akhtar, R. Kumar, J. Swaminanthan, R. Bedi, and D. K. Shukla, “Effect of boron modified microstructure on impression creep behavior of simulated multi-pass heat affected zone of P91 steel,” National Conf. on Adv. Mater., Manuf. Metrol. NCAMMM–2018 (2018), pp. 150–157. A. Khajuria, M. Akhtar, R. Kumar, J. Swaminanthan, R. Bedi, and D. K. Shukla, “Effect of boron modified microstructure on impression creep behavior of simulated multi-pass heat affected zone of P91 steel,” National Conf. on Adv. Mater., Manuf. Metrol. NCAMMM–2018 (2018), pp. 150–157.
19.
go back to reference C. R. Das, S. K. Albert, A. K. Bhaduri, and B. S. Murthy, “Effect of boron addition and initial heat-treatment temperature on microstructure and mechanical properties of modified 9Cr–1Mo steels under different heat-treatment conditions,” Metall. Mater. Trans. A 44A, 2171–2186 (2013).CrossRef C. R. Das, S. K. Albert, A. K. Bhaduri, and B. S. Murthy, “Effect of boron addition and initial heat-treatment temperature on microstructure and mechanical properties of modified 9Cr–1Mo steels under different heat-treatment conditions,” Metall. Mater. Trans. A 44A, 2171–2186 (2013).CrossRef
20.
go back to reference T. Vuherer, M. Dunđer, Lj. Milović, M. Zrilić, and I. Samardžić, “Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel,” Metalurgija 52 (3), 317–320 (2013). T. Vuherer, M. Dunđer, Lj. Milović, M. Zrilić, and I. Samardžić, “Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel,” Metalurgija 52 (3), 317–320 (2013).
21.
go back to reference T. Sakuma and R. W. K. Honeycombe, “Microstructures of isothermally transformed Fe–Nb–C alloys,” Met. Sci. 18, 449–454 (1984).CrossRef T. Sakuma and R. W. K. Honeycombe, “Microstructures of isothermally transformed Fe–Nb–C alloys,” Met. Sci. 18, 449–454 (1984).CrossRef
22.
go back to reference I. Holzer, “Modelling and simulation of strengthening in complex martensitic 9–12% Cr steel and a binary Fe–Cu alloy,” PhD Dissertation (Graz University of Technology, Austria, 2010). I. Holzer, “Modelling and simulation of strengthening in complex martensitic 9–12% Cr steel and a binary Fe–Cu alloy,” PhD Dissertation (Graz University of Technology, Austria, 2010).
23.
go back to reference P. Mayr, “Evolution of microstructure and mechanical properties of the heat affected zone in B-containing 9% chromium steels,” PhD Dissertation (Graz University of Technology, Austria, 2007). P. Mayr, “Evolution of microstructure and mechanical properties of the heat affected zone in B-containing 9% chromium steels,” PhD Dissertation (Graz University of Technology, Austria, 2007).
24.
go back to reference M. Durand-Charre, Microstructure of Steels and Cast Irons (Springer Science & Business Media, 2004).CrossRef M. Durand-Charre, Microstructure of Steels and Cast Irons (Springer Science & Business Media, 2004).CrossRef
25.
go back to reference A. E. Fedoseeva, N. R. Dudova, and R. O. Kaibyshev, “Effect of stresses on the structural changes in high-chromium steel upon creep,” Phys. Met. Metallogr. 118, 591–600 (2017).CrossRef A. E. Fedoseeva, N. R. Dudova, and R. O. Kaibyshev, “Effect of stresses on the structural changes in high-chromium steel upon creep,” Phys. Met. Metallogr. 118, 591–600 (2017).CrossRef
26.
go back to reference J. Brozda, and M. Zeman, “Weldability of 9Cr1MoNb, V P91 steel intended for service in the power industry,” Weld. Int. 10, 370–380 (1996).CrossRef J. Brozda, and M. Zeman, “Weldability of 9Cr1MoNb, V P91 steel intended for service in the power industry,” Weld. Int. 10, 370–380 (1996).CrossRef
27.
go back to reference K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, “Microstructure characterization of heat affected zone after welding in mod. 9Cr–1Mo steel,” Mater. Charact. 101, 106–113 (2015).CrossRef K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, “Microstructure characterization of heat affected zone after welding in mod. 9Cr–1Mo steel,” Mater. Charact. 101, 106–113 (2015).CrossRef
28.
go back to reference H. Y. Lee, K. S. Park, J. H. Lee, Y. U. Heo, D. W. Suh, and H. K. D. H. Bhadeshia, “Dissolution behavior of NbC during slab reheating,” ISIJ Int. 54, 1677–1681 (2014).CrossRef H. Y. Lee, K. S. Park, J. H. Lee, Y. U. Heo, D. W. Suh, and H. K. D. H. Bhadeshia, “Dissolution behavior of NbC during slab reheating,” ISIJ Int. 54, 1677–1681 (2014).CrossRef
29.
go back to reference Y. Wang, M. Zhou, X. Pang, A. A. Volinsky, M. Chen, and K. Gao, “Applications and thermodynamic analysis of equilibrium solution for secondary phases in Ti–N–C gear steel system with nano-particles,” Metals 7 (4), 110 (2017).CrossRef Y. Wang, M. Zhou, X. Pang, A. A. Volinsky, M. Chen, and K. Gao, “Applications and thermodynamic analysis of equilibrium solution for secondary phases in Ti–N–C gear steel system with nano-particles,” Metals 7 (4), 110 (2017).CrossRef
30.
go back to reference N. Z. Gutiérrez, J. V. Alvarado, H. de Cicco, and A. Danón, “Microstructural study of welded joints in a high temperature martensitic-ferritic ASTM A335 P91 steel,” Procedia Mater. Sci. 8, 1140–1149 (2015).CrossRef N. Z. Gutiérrez, J. V. Alvarado, H. de Cicco, and A. Danón, “Microstructural study of welded joints in a high temperature martensitic-ferritic ASTM A335 P91 steel,” Procedia Mater. Sci. 8, 1140–1149 (2015).CrossRef
31.
go back to reference H. Hongo, M. Tabuchi, and T. Watanabe, “Type IV creep damage behavior in gr. 91 steel welded joints,” Metall. Mater. Trans. A 43, 1163–1173 (2012).CrossRef H. Hongo, M. Tabuchi, and T. Watanabe, “Type IV creep damage behavior in gr. 91 steel welded joints,” Metall. Mater. Trans. A 43, 1163–1173 (2012).CrossRef
32.
go back to reference K. Maruyama, K. Sawada, and J. Koike, “Strengthening mechanisms of creep resistant tempered martensitic steel,” ISIJ Int. 41, 641–653 (2001).CrossRef K. Maruyama, K. Sawada, and J. Koike, “Strengthening mechanisms of creep resistant tempered martensitic steel,” ISIJ Int. 41, 641–653 (2001).CrossRef
33.
go back to reference R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef
34.
go back to reference R. W. Fountain and J. Chipman, “Solubility and precipitation of boron nitride in iron-boron alloys,” Trans. Met. Soc. AIME 224, 599–606 (1962). R. W. Fountain and J. Chipman, “Solubility and precipitation of boron nitride in iron-boron alloys,” Trans. Met. Soc. AIME 224, 599–606 (1962).
35.
go back to reference A. Yu. Churyumov, M. G. Khomutov, A. A. Tsar’kov, A. V. Pozdnyakov, A. N. Solonin, V. M. Efimov, and E. L. Mukhanov, “Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures,” Phys. Met. Metallogr. 115, 809–813 (2014).CrossRef A. Yu. Churyumov, M. G. Khomutov, A. A. Tsar’kov, A. V. Pozdnyakov, A. N. Solonin, V. M. Efimov, and E. L. Mukhanov, “Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures,” Phys. Met. Metallogr. 115, 809–813 (2014).CrossRef
36.
go back to reference Y. L. Gao, X. X. Xue, and H. Yang, “Influence of boron on initial austenite grain size and hot deformation behavior of boron microalloyed steels,” Crystals 5, 592–607 (2015).CrossRef Y. L. Gao, X. X. Xue, and H. Yang, “Influence of boron on initial austenite grain size and hot deformation behavior of boron microalloyed steels,” Crystals 5, 592–607 (2015).CrossRef
37.
go back to reference M. Akhtar, A. Khajuria, J. K. Sahu, J. Swaminathan, R. Kumar, and S. K. Albert, “Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications,” Appl. Nanosci., 8 (7) 1660–1685 1 (2018). https://doi.org/10.1007/s13204-018-0854-1 M. Akhtar, A. Khajuria, J. K. Sahu, J. Swaminathan, R. Kumar, and S. K. Albert, “Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications,” Appl. Nanosci., 8 (7) 1660–1685 1 (2018). https://​doi.​org/​10.​1007/​s13204-018-0854-1
38.
go back to reference S. Kobayashi, K. Toshimori, K. Nakai, Y. Ohmori, H. Ashai, and T. Muraki, “Effects of boron addition on tempering processes in an Fe–9Cr–0.1C alloy martensite,” ISIJ Int. Suppl. 42, 72–76 (2002).CrossRef S. Kobayashi, K. Toshimori, K. Nakai, Y. Ohmori, H. Ashai, and T. Muraki, “Effects of boron addition on tempering processes in an Fe–9Cr–0.1C alloy martensite,” ISIJ Int. Suppl. 42, 72–76 (2002).CrossRef
39.
go back to reference A. A. Alekseev and E. M. Grinberg, “Effect of Boron on the kinetics of low temperature decomposition of martensite in quenched medium carbon steel,” Phys. Met. Metallogr. 117, 295–298 (2016).CrossRef A. A. Alekseev and E. M. Grinberg, “Effect of Boron on the kinetics of low temperature decomposition of martensite in quenched medium carbon steel,” Phys. Met. Metallogr. 117, 295–298 (2016).CrossRef
Metadata
Title
Evolution of Microstructure during Welding Simulation of Boron Modified P91 Steel
Authors
Modassir Akhtar
Akhil Khajuria
V. S. Kumar
R. K. Gupta
Shaju K. Albert
Publication date
01-07-2019
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 7/2019
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19070056

Other articles of this Issue 7/2019

Physics of Metals and Metallography 7/2019 Go to the issue