Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2019

01.07.2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Evolution of Microstructure during Welding Simulation of Boron Modified P91 Steel

verfasst von: Modassir Akhtar, Akhil Khajuria, V. S. Kumar, R. K. Gupta, Shaju K. Albert

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Formation of heat affected zone (HAZ) when welding is considered as weakest link across transition joint. Characterization of this zone is a key issue to reduce the effect of embrittlement; hence appropriate welding parameters were adopted. In the present study, HAZ simulation was done for boron modified P91 steel using Gleeble. It has been observed that matrix was martensitic in nature for coarse-grain HAZ (CGHAZ)/fine-grain HAZ (FGHAZ) whereas for inter-critical HAZ (ICHAZ), matrix was ferrite + martensite containing primary carbides. The size and fraction of carbides varied with peak temperature. Presence of boron influenced the microstructural characteristics of different zones by influencing precipitation nature and fractional characteristic of phases. Substantial variation in hardness was obtained before and after post-weld heat treatment (PWHT). In this respect, simulated samples exhibited maximum hardness at CGHAZ and after PWHT the same region showed minimum hardness. Short-term impression creep testing of simulated sub-HAZs was done, which revealed embrittling effect in ICHAZ, whereas embrittlement shifted to CGHAZ after PWHT. Based on conventional nomenclature for weldment failures, it is confirmed that PWHT shifted type-IV failure (ICHAZ) to type-III failure (CGHAZ) in boron modified P91 steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Goswami, “P(T) 91 steel—A review of current code and fabrication practices,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 6th (La Fonda, USA, (2010), pp. 762–786. P. Goswami, “P(T) 91 steel—A review of current code and fabrication practices,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 6th (La Fonda, USA, (2010), pp. 762–786.
2.
Zurück zum Zitat K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S. L. Mannan, “Characterization of microstructures across the heat-affected zone of the modified 9Cr–1Mo weld joint to understand its role in promoting type IV cracking,” Metall. Mater. Trans. A 38, 58–68 (2007).CrossRef K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S. L. Mannan, “Characterization of microstructures across the heat-affected zone of the modified 9Cr–1Mo weld joint to understand its role in promoting type IV cracking,” Metall. Mater. Trans. A 38, 58–68 (2007).CrossRef
3.
Zurück zum Zitat A. E. Fedoseeva, P. A. Kozlov, V. A. Dudko, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C,” Phys. Met. Metallogr. 116, 1047–1056 (2015).CrossRef A. E. Fedoseeva, P. A. Kozlov, V. A. Dudko, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C,” Phys. Met. Metallogr. 116, 1047–1056 (2015).CrossRef
4.
Zurück zum Zitat S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, “Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel,” Sci. Technol. Weld. Joining 10, 149–157 (2005).CrossRef S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, “Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel,” Sci. Technol. Weld. Joining 10, 149–157 (2005).CrossRef
5.
Zurück zum Zitat Y. Wang and L. Li, “Microstructure evolution of fine-grained heat affected zone in type IV failure of P91 welds,” Weld. J. 95, 27–36 (2016). Y. Wang and L. Li, “Microstructure evolution of fine-grained heat affected zone in type IV failure of P91 welds,” Weld. J. 95, 27–36 (2016).
6.
Zurück zum Zitat Ya. E. Shakhova, A. N. Belyakov, and R. O. Kaibyshev, “Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr,” Phys. Met. Metallogr. 117, 378–389 (2016).CrossRef Ya. E. Shakhova, A. N. Belyakov, and R. O. Kaibyshev, “Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr,” Phys. Met. Metallogr. 117, 378–389 (2016).CrossRef
7.
Zurück zum Zitat F. Abe, “Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants,” Sci. Technol. Adv. Mater. 9, 1–15 (2008).CrossRef F. Abe, “Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants,” Sci. Technol. Adv. Mater. 9, 1–15 (2008).CrossRef
8.
Zurück zum Zitat F. Abe, M. Tabuchi, S. Tsukamoto, and Y. Liu, “Alloy design of tempered martensitic 9Cr-boron steel for A‑USC boilers,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 7th (Waikoloa, Hawaii, 2013), pp. 1127–1138. F. Abe, M. Tabuchi, S. Tsukamoto, and Y. Liu, “Alloy design of tempered martensitic 9Cr-boron steel for A‑USC boilers,” Adv. Mater. Technol. Fossil Power Plants, Proc. Conf., 7th (Waikoloa, Hawaii, 2013), pp. 1127–1138.
9.
Zurück zum Zitat V. A. Dudko, A. E. Fedoseeva, A. N. Belyakov, and R. O. Kaibyshev, “Influence of the carbon content on the phase composition and mechanical properties of P92-type steel,” Phys. Met. Metallogr. 116, 1165–1174 (2015).CrossRef V. A. Dudko, A. E. Fedoseeva, A. N. Belyakov, and R. O. Kaibyshev, “Influence of the carbon content on the phase composition and mechanical properties of P92-type steel,” Phys. Met. Metallogr. 116, 1165–1174 (2015).CrossRef
10.
Zurück zum Zitat M. Akhtar, “Metallurgical characterisation of simulated heat affected zone in boron modified P91 steel,” M. Tech. Dissertation (National Institute of Technology, Warangal, 2017). M. Akhtar, “Metallurgical characterisation of simulated heat affected zone in boron modified P91 steel,” M. Tech. Dissertation (National Institute of Technology, Warangal, 2017).
11.
Zurück zum Zitat S. Samsiah, “Structure of properties of the heat affected zone of P91 creep resistant steel,” PhD Dissertation (University of Wollongong, Australia, 2007). S. Samsiah, “Structure of properties of the heat affected zone of P91 creep resistant steel,” PhD Dissertation (University of Wollongong, Australia, 2007).
12.
Zurück zum Zitat F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto, “Suppression of type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition,” Int. J. Pressure Vessels Piping 84, 44–52 (2007).CrossRef F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto, “Suppression of type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition,” Int. J. Pressure Vessels Piping 84, 44–52 (2007).CrossRef
13.
Zurück zum Zitat M. Lomozik and A. Zienlinska-Lipiec, “Microscopic analysis of the influence of multiple thermal cycles on simulated HAZ toughness in P91 steel,” Arch. Metall. Mater. 53, 1025–1034 (2008). M. Lomozik and A. Zienlinska-Lipiec, “Microscopic analysis of the influence of multiple thermal cycles on simulated HAZ toughness in P91 steel,” Arch. Metall. Mater. 53, 1025–1034 (2008).
14.
Zurück zum Zitat M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol, and M. Dammak, “Characterization of mechanically alloyed nanocrystalline Fe(Al): Crystallite size and dislocation density,” J. Nanomater. 2010, 82 (2010).CrossRef M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol, and M. Dammak, “Characterization of mechanically alloyed nanocrystalline Fe(Al): Crystallite size and dislocation density,” J. Nanomater. 2010, 82 (2010).CrossRef
15.
Zurück zum Zitat Z. Nishiyama, Martensitic Transformation, Ed. by M. E. Fine, M. Meshii, and C. M. Wayman (Academic Press, New York, 1978). Z. Nishiyama, Martensitic Transformation, Ed. by M. E. Fine, M. Meshii, and C. M. Wayman (Academic Press, New York, 1978).
16.
Zurück zum Zitat F. Yang and J. C.M. Li, “Impression test—A review,” Mater. Sci. Eng., R 74, 233–253 (2013). F. Yang and J. C.M. Li, “Impression test—A review,” Mater. Sci. Eng., R 74, 233–253 (2013).
17.
Zurück zum Zitat N. V. D. Vijayanand, V. Ganesan, K. Laha, and M. D. Mathew, “Evaluation of creep deformation behavior of different microsrtuctural zones of 316LN SS weld joint using impression creep testing technique,” Mater. Sci. Technol. 30, 1223–1228 (2014).CrossRef N. V. D. Vijayanand, V. Ganesan, K. Laha, and M. D. Mathew, “Evaluation of creep deformation behavior of different microsrtuctural zones of 316LN SS weld joint using impression creep testing technique,” Mater. Sci. Technol. 30, 1223–1228 (2014).CrossRef
18.
Zurück zum Zitat A. Khajuria, M. Akhtar, R. Kumar, J. Swaminanthan, R. Bedi, and D. K. Shukla, “Effect of boron modified microstructure on impression creep behavior of simulated multi-pass heat affected zone of P91 steel,” National Conf. on Adv. Mater., Manuf. Metrol. NCAMMM–2018 (2018), pp. 150–157. A. Khajuria, M. Akhtar, R. Kumar, J. Swaminanthan, R. Bedi, and D. K. Shukla, “Effect of boron modified microstructure on impression creep behavior of simulated multi-pass heat affected zone of P91 steel,” National Conf. on Adv. Mater., Manuf. Metrol. NCAMMM–2018 (2018), pp. 150–157.
19.
Zurück zum Zitat C. R. Das, S. K. Albert, A. K. Bhaduri, and B. S. Murthy, “Effect of boron addition and initial heat-treatment temperature on microstructure and mechanical properties of modified 9Cr–1Mo steels under different heat-treatment conditions,” Metall. Mater. Trans. A 44A, 2171–2186 (2013).CrossRef C. R. Das, S. K. Albert, A. K. Bhaduri, and B. S. Murthy, “Effect of boron addition and initial heat-treatment temperature on microstructure and mechanical properties of modified 9Cr–1Mo steels under different heat-treatment conditions,” Metall. Mater. Trans. A 44A, 2171–2186 (2013).CrossRef
20.
Zurück zum Zitat T. Vuherer, M. Dunđer, Lj. Milović, M. Zrilić, and I. Samardžić, “Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel,” Metalurgija 52 (3), 317–320 (2013). T. Vuherer, M. Dunđer, Lj. Milović, M. Zrilić, and I. Samardžić, “Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel,” Metalurgija 52 (3), 317–320 (2013).
21.
Zurück zum Zitat T. Sakuma and R. W. K. Honeycombe, “Microstructures of isothermally transformed Fe–Nb–C alloys,” Met. Sci. 18, 449–454 (1984).CrossRef T. Sakuma and R. W. K. Honeycombe, “Microstructures of isothermally transformed Fe–Nb–C alloys,” Met. Sci. 18, 449–454 (1984).CrossRef
22.
Zurück zum Zitat I. Holzer, “Modelling and simulation of strengthening in complex martensitic 9–12% Cr steel and a binary Fe–Cu alloy,” PhD Dissertation (Graz University of Technology, Austria, 2010). I. Holzer, “Modelling and simulation of strengthening in complex martensitic 9–12% Cr steel and a binary Fe–Cu alloy,” PhD Dissertation (Graz University of Technology, Austria, 2010).
23.
Zurück zum Zitat P. Mayr, “Evolution of microstructure and mechanical properties of the heat affected zone in B-containing 9% chromium steels,” PhD Dissertation (Graz University of Technology, Austria, 2007). P. Mayr, “Evolution of microstructure and mechanical properties of the heat affected zone in B-containing 9% chromium steels,” PhD Dissertation (Graz University of Technology, Austria, 2007).
24.
Zurück zum Zitat M. Durand-Charre, Microstructure of Steels and Cast Irons (Springer Science & Business Media, 2004).CrossRef M. Durand-Charre, Microstructure of Steels and Cast Irons (Springer Science & Business Media, 2004).CrossRef
25.
Zurück zum Zitat A. E. Fedoseeva, N. R. Dudova, and R. O. Kaibyshev, “Effect of stresses on the structural changes in high-chromium steel upon creep,” Phys. Met. Metallogr. 118, 591–600 (2017).CrossRef A. E. Fedoseeva, N. R. Dudova, and R. O. Kaibyshev, “Effect of stresses on the structural changes in high-chromium steel upon creep,” Phys. Met. Metallogr. 118, 591–600 (2017).CrossRef
26.
Zurück zum Zitat J. Brozda, and M. Zeman, “Weldability of 9Cr1MoNb, V P91 steel intended for service in the power industry,” Weld. Int. 10, 370–380 (1996).CrossRef J. Brozda, and M. Zeman, “Weldability of 9Cr1MoNb, V P91 steel intended for service in the power industry,” Weld. Int. 10, 370–380 (1996).CrossRef
27.
Zurück zum Zitat K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, “Microstructure characterization of heat affected zone after welding in mod. 9Cr–1Mo steel,” Mater. Charact. 101, 106–113 (2015).CrossRef K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, “Microstructure characterization of heat affected zone after welding in mod. 9Cr–1Mo steel,” Mater. Charact. 101, 106–113 (2015).CrossRef
28.
Zurück zum Zitat H. Y. Lee, K. S. Park, J. H. Lee, Y. U. Heo, D. W. Suh, and H. K. D. H. Bhadeshia, “Dissolution behavior of NbC during slab reheating,” ISIJ Int. 54, 1677–1681 (2014).CrossRef H. Y. Lee, K. S. Park, J. H. Lee, Y. U. Heo, D. W. Suh, and H. K. D. H. Bhadeshia, “Dissolution behavior of NbC during slab reheating,” ISIJ Int. 54, 1677–1681 (2014).CrossRef
29.
Zurück zum Zitat Y. Wang, M. Zhou, X. Pang, A. A. Volinsky, M. Chen, and K. Gao, “Applications and thermodynamic analysis of equilibrium solution for secondary phases in Ti–N–C gear steel system with nano-particles,” Metals 7 (4), 110 (2017).CrossRef Y. Wang, M. Zhou, X. Pang, A. A. Volinsky, M. Chen, and K. Gao, “Applications and thermodynamic analysis of equilibrium solution for secondary phases in Ti–N–C gear steel system with nano-particles,” Metals 7 (4), 110 (2017).CrossRef
30.
Zurück zum Zitat N. Z. Gutiérrez, J. V. Alvarado, H. de Cicco, and A. Danón, “Microstructural study of welded joints in a high temperature martensitic-ferritic ASTM A335 P91 steel,” Procedia Mater. Sci. 8, 1140–1149 (2015).CrossRef N. Z. Gutiérrez, J. V. Alvarado, H. de Cicco, and A. Danón, “Microstructural study of welded joints in a high temperature martensitic-ferritic ASTM A335 P91 steel,” Procedia Mater. Sci. 8, 1140–1149 (2015).CrossRef
31.
Zurück zum Zitat H. Hongo, M. Tabuchi, and T. Watanabe, “Type IV creep damage behavior in gr. 91 steel welded joints,” Metall. Mater. Trans. A 43, 1163–1173 (2012).CrossRef H. Hongo, M. Tabuchi, and T. Watanabe, “Type IV creep damage behavior in gr. 91 steel welded joints,” Metall. Mater. Trans. A 43, 1163–1173 (2012).CrossRef
32.
Zurück zum Zitat K. Maruyama, K. Sawada, and J. Koike, “Strengthening mechanisms of creep resistant tempered martensitic steel,” ISIJ Int. 41, 641–653 (2001).CrossRef K. Maruyama, K. Sawada, and J. Koike, “Strengthening mechanisms of creep resistant tempered martensitic steel,” ISIJ Int. 41, 641–653 (2001).CrossRef
33.
Zurück zum Zitat R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef
34.
Zurück zum Zitat R. W. Fountain and J. Chipman, “Solubility and precipitation of boron nitride in iron-boron alloys,” Trans. Met. Soc. AIME 224, 599–606 (1962). R. W. Fountain and J. Chipman, “Solubility and precipitation of boron nitride in iron-boron alloys,” Trans. Met. Soc. AIME 224, 599–606 (1962).
35.
Zurück zum Zitat A. Yu. Churyumov, M. G. Khomutov, A. A. Tsar’kov, A. V. Pozdnyakov, A. N. Solonin, V. M. Efimov, and E. L. Mukhanov, “Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures,” Phys. Met. Metallogr. 115, 809–813 (2014).CrossRef A. Yu. Churyumov, M. G. Khomutov, A. A. Tsar’kov, A. V. Pozdnyakov, A. N. Solonin, V. M. Efimov, and E. L. Mukhanov, “Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures,” Phys. Met. Metallogr. 115, 809–813 (2014).CrossRef
36.
Zurück zum Zitat Y. L. Gao, X. X. Xue, and H. Yang, “Influence of boron on initial austenite grain size and hot deformation behavior of boron microalloyed steels,” Crystals 5, 592–607 (2015).CrossRef Y. L. Gao, X. X. Xue, and H. Yang, “Influence of boron on initial austenite grain size and hot deformation behavior of boron microalloyed steels,” Crystals 5, 592–607 (2015).CrossRef
37.
Zurück zum Zitat M. Akhtar, A. Khajuria, J. K. Sahu, J. Swaminathan, R. Kumar, and S. K. Albert, “Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications,” Appl. Nanosci., 8 (7) 1660–1685 1 (2018). https://doi.org/10.1007/s13204-018-0854-1 M. Akhtar, A. Khajuria, J. K. Sahu, J. Swaminathan, R. Kumar, and S. K. Albert, “Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications,” Appl. Nanosci., 8 (7) 1660–1685 1 (2018). https://​doi.​org/​10.​1007/​s13204-018-0854-1
38.
Zurück zum Zitat S. Kobayashi, K. Toshimori, K. Nakai, Y. Ohmori, H. Ashai, and T. Muraki, “Effects of boron addition on tempering processes in an Fe–9Cr–0.1C alloy martensite,” ISIJ Int. Suppl. 42, 72–76 (2002).CrossRef S. Kobayashi, K. Toshimori, K. Nakai, Y. Ohmori, H. Ashai, and T. Muraki, “Effects of boron addition on tempering processes in an Fe–9Cr–0.1C alloy martensite,” ISIJ Int. Suppl. 42, 72–76 (2002).CrossRef
39.
Zurück zum Zitat A. A. Alekseev and E. M. Grinberg, “Effect of Boron on the kinetics of low temperature decomposition of martensite in quenched medium carbon steel,” Phys. Met. Metallogr. 117, 295–298 (2016).CrossRef A. A. Alekseev and E. M. Grinberg, “Effect of Boron on the kinetics of low temperature decomposition of martensite in quenched medium carbon steel,” Phys. Met. Metallogr. 117, 295–298 (2016).CrossRef
Metadaten
Titel
Evolution of Microstructure during Welding Simulation of Boron Modified P91 Steel
verfasst von
Modassir Akhtar
Akhil Khajuria
V. S. Kumar
R. K. Gupta
Shaju K. Albert
Publikationsdatum
01.07.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19070056

Weitere Artikel der Ausgabe 7/2019

Physics of Metals and Metallography 7/2019 Zur Ausgabe