Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 6/2022

07-10-2022 | Original Research Article

Evolution of Porosity Microsegregation in Continuous Casting Bloom During the Heating Process

Authors: Lang Liu, Rui Guan, Cheng Ji, Miaoyong Zhu

Published in: Metallurgical and Materials Transactions B | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microsegregation of continuous casting bloom or slab could cause the banded structures in the rolled products, which would seriously reduce the anisotropy, plasticity, and toughness of steel. The previous research mostly focused on the dendrite microsegregation that is located between the dendrites. However, the microsegregation degree (MSD) of porosity segregation that is associated with and located around the center shrinkage cavity is much more serious than that of dendrite segregation. In this paper, a new evaluation method of microsegregation at the microscale that considered the proportion of segregated cells and microsegregation concentration ratio was developed based on the concept of degree centrality in “network science.” Combining this new microsegregation evaluation method and orthogonal experiment, the porosity microsegregation improvement of continuous casting bloom for heavy rail steel with different holding times and temperatures during the heating process was investigated by the diffusion kinetic model. The results show that the holding temperature has the greatest impact on element diffusion when compared to the shrinkage cavity size and holding time. When the size of the shrinkage cavity is greater than 400 μm, the optimal holding temperature is 1250 °C, and the optimal holding time is 90 min. The new diffusion kinetic model of porosity microsegregation has high accuracy with the optimal conditions of the heating process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.K. Sigworth: Int. J. Met., 2014, vol. 8, pp. 7–20. G.K. Sigworth: Int. J. Met., 2014, vol. 8, pp. 7–20.
2.
go back to reference R. Guan, C. Ji, C. Wu, and M. Zhu: Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503–16.CrossRef R. Guan, C. Ji, C. Wu, and M. Zhu: Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503–16.CrossRef
3.
go back to reference R. Guan, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1137–53.CrossRef R. Guan, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1137–53.CrossRef
4.
go back to reference R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2571–83.CrossRef R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2571–83.CrossRef
6.
go back to reference C. Tasan, J. Hoefnagels, and M. Geers: Scr. Mater., 2010, vol. 62, pp. 835–38.CrossRef C. Tasan, J. Hoefnagels, and M. Geers: Scr. Mater., 2010, vol. 62, pp. 835–38.CrossRef
7.
8.
go back to reference X.G. Liu, D.N. Meng, Y.H. Wang, H. Chen, and M. Jin: J. Mater. Eng. Perform., 2014, vol. 24, pp. 1079–85.CrossRef X.G. Liu, D.N. Meng, Y.H. Wang, H. Chen, and M. Jin: J. Mater. Eng. Perform., 2014, vol. 24, pp. 1079–85.CrossRef
9.
go back to reference N. H. Heo, J. C. Chang, S. J. Kim: Mater. Sci. Eng. A, vol. 559, pp. 665–77. N. H. Heo, J. C. Chang, S. J. Kim: Mater. Sci. Eng. A, vol. 559, pp. 665–77.
10.
go back to reference S.N. Samaras and G.N. Haidemenopoulos: J. Mater. Eng. Perform., 2007, vol. 194, pp. 63–73. S.N. Samaras and G.N. Haidemenopoulos: J. Mater. Eng. Perform., 2007, vol. 194, pp. 63–73.
11.
go back to reference H.E. Lippard, C.E. Campbell, T. Bjorklind, U. Borggren, P. Kellgren, G.B. Olson, and V.P. Dravid: Metall. Mater. Trans. B, 1998, vol. 29, pp. 205–10.CrossRef H.E. Lippard, C.E. Campbell, T. Bjorklind, U. Borggren, P. Kellgren, G.B. Olson, and V.P. Dravid: Metall. Mater. Trans. B, 1998, vol. 29, pp. 205–10.CrossRef
12.
go back to reference Y.H. Han, C.S. Li, J.Y. Ren, C.L. Qiu, Y.Q. Zhang, and J.Y. Wang: ISIJ Int., 2019, vol. 59, pp. 1893–1900.CrossRef Y.H. Han, C.S. Li, J.Y. Ren, C.L. Qiu, Y.Q. Zhang, and J.Y. Wang: ISIJ Int., 2019, vol. 59, pp. 1893–1900.CrossRef
13.
go back to reference H.J. Wang, J. Xu, Y.L. Kang, M.O. Tang, and Z.F. Zhang: J. Alloy. Compd., 2014, vol. 585, pp. 19–24.CrossRef H.J. Wang, J. Xu, Y.L. Kang, M.O. Tang, and Z.F. Zhang: J. Alloy. Compd., 2014, vol. 585, pp. 19–24.CrossRef
14.
go back to reference S. He, C.S. Li, J.Y. Ren, and Y.H. Han: Steel Res. Int., 2018, vol. 89, p. 1800148.CrossRef S. He, C.S. Li, J.Y. Ren, and Y.H. Han: Steel Res. Int., 2018, vol. 89, p. 1800148.CrossRef
15.
16.
go back to reference H.W. Ai, Z.G. Lv, and X. Guo: Rare Metal Mat. Eng., 2017, vol. 46, pp. 2476–80. H.W. Ai, Z.G. Lv, and X. Guo: Rare Metal Mat. Eng., 2017, vol. 46, pp. 2476–80.
17.
go back to reference H.H. Ge, F.L. Ren, J. Li, X.J. Xia, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2017, vol. 48A(3), pp. 1139–50.CrossRef H.H. Ge, F.L. Ren, J. Li, X.J. Xia, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2017, vol. 48A(3), pp. 1139–50.CrossRef
18.
19.
20.
go back to reference Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Mater. Sci. Eng. A, 2008, vol. 491, pp. 154–58.CrossRef Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Mater. Sci. Eng. A, 2008, vol. 491, pp. 154–58.CrossRef
21.
go back to reference D.F. Zhang and M. Strangwood: Mater. Sci. Technol., 2019, vol. 35, pp. 1337–46.CrossRef D.F. Zhang and M. Strangwood: Mater. Sci. Technol., 2019, vol. 35, pp. 1337–46.CrossRef
22.
go back to reference R. Kadalbal, J. Montoyacruz, and T. Kattamis: Metall. Mater. Trans. A, 1980, vol. 11, pp. 1547–53.CrossRef R. Kadalbal, J. Montoyacruz, and T. Kattamis: Metall. Mater. Trans. A, 1980, vol. 11, pp. 1547–53.CrossRef
23.
go back to reference Shewmon P: McGraw-Hill, New York, 1963, pp. 154. Shewmon P: McGraw-Hill, New York, 1963, pp. 154.
25.
go back to reference W.B. Li, Q.L. Pan, Y.P. Xiao, Y.B. He, and X.Y. Liu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2127–33.CrossRef W.B. Li, Q.L. Pan, Y.P. Xiao, Y.B. He, and X.Y. Liu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2127–33.CrossRef
26.
go back to reference D. F. Zhang, J. Peng: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2005, vol. 20, pp. 111–14. D. F. Zhang, J. Peng: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2005, vol. 20, pp. 111–14.
27.
28.
go back to reference S. Nabeshima, H. Nakato, T. Fujii, T. Fujimura, K. Kushida, and H. Mizota: ISIJ Int., 1995, vol. 35, pp. 673–79.CrossRef S. Nabeshima, H. Nakato, T. Fujii, T. Fujimura, K. Kushida, and H. Mizota: ISIJ Int., 1995, vol. 35, pp. 673–79.CrossRef
Metadata
Title
Evolution of Porosity Microsegregation in Continuous Casting Bloom During the Heating Process
Authors
Lang Liu
Rui Guan
Cheng Ji
Miaoyong Zhu
Publication date
07-10-2022
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 6/2022
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-022-02636-w

Other articles of this Issue 6/2022

Metallurgical and Materials Transactions B 6/2022 Go to the issue

Premium Partners