Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2022

29-11-2021 | Research Article-Mechanical Engineering

Ex Situ Fabrication of Multiwalled Carbon Nanotube-Reinforced Aluminum Nanocomposite via Conventional Sintering and SPS Techniques

Authors: Pankaj Shrivastava, Syed Nasimul Alam, Krishanu Biswas

Published in: Arabian Journal for Science and Engineering | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study is based on the fabrication of multiwalled carbon nanotube (MWCNT)-reinforced Al-based metal matrix nanocomposite (AMnC) by conventional and spark plasma sintering (SPS) techniques. A comparative analysis is done between the Al-MWCNT nanocomposites fabricated by these sintering techniques. Analytical characterization like SEM, HRTEM XRD, Raman spectroscopy, and FTIR was performed to determine the microstructure, strengthening mechanism, chemical bonding, and densification process in the nanocomposites. 1, 2, and 3 wt.% MWCNT-reinforced AMnCs have been fabricated following the ex situ powder metallurgy (PM) technique. The result indicates a significant increase in the mechanical properties up to 1 wt. % MWCNT addition to the Al matrix for conventionally sintered nanocomposites as that beyond 1 wt. % nanofiller addition, MWCNT starts to agglomerate resulting to be detrimental to the performance of the AMnCs. The 1 wt.% SPSed AMnC showed ~  200%, ~  50%, ~  10%, ~  34%, and ~  77.4% increase in the values of modulus, compression strength, density, hardness, and wear rate with respect to conventionally sintered 1 wt.% reinforced AMnC. However, SPSed nanocomposites exhibit superior mechanical properties in contrast to the conventionally sintered nanocomposites which is attributed to the improvement in the densification, grain size, and uniform MWCNT distribution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar, K.; Mohan, P.; Masanta, M.: Influence of welding current on the mechanical property of 3 mm thick commercial 1050 aluminium butt joint weld by AC-TIG welding method. Mater. Today Proc. 5, 24141–24146 (2018) Kumar, K.; Mohan, P.; Masanta, M.: Influence of welding current on the mechanical property of 3 mm thick commercial 1050 aluminium butt joint weld by AC-TIG welding method. Mater. Today Proc. 5, 24141–24146 (2018)
2.
go back to reference An, Y.; Zhu, L.; Li, W.; Lu, J.; Liu, X.: Study of fly ash-based flux effects on microstructure and wear of TIG-cladded Ni-based composite coating. Results Phys. 12, 970–974 (2019) An, Y.; Zhu, L.; Li, W.; Lu, J.; Liu, X.: Study of fly ash-based flux effects on microstructure and wear of TIG-cladded Ni-based composite coating. Results Phys. 12, 970–974 (2019)
3.
go back to reference Varshney, D.; Kumar, K.: Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization. Ain Shams Eng. J. 12, 1143–1152 (2021) Varshney, D.; Kumar, K.: Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization. Ain Shams Eng. J. 12, 1143–1152 (2021)
4.
go back to reference Tisza, M.; Czinege, I.: Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Light. Mater. Manuf. 1, 229–238 (2018) Tisza, M.; Czinege, I.: Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Light. Mater. Manuf. 1, 229–238 (2018)
5.
go back to reference Rashmi, G.S.: Shivashankar, Poornima, Overview of different overhead transmission line conductors. Mater. Today Proc. 4, 11318–11324 (2017) Rashmi, G.S.: Shivashankar, Poornima, Overview of different overhead transmission line conductors. Mater. Today Proc. 4, 11318–11324 (2017)
6.
go back to reference Rhaiem, E.; Bouraoui, T.; El Halouani, F.: Corrosion evolution of the aluminum alloys used in overhead transmission lines. IOP Conf. Ser. Mater. Sci. Eng. 28, 012011 (2012) Rhaiem, E.; Bouraoui, T.; El Halouani, F.: Corrosion evolution of the aluminum alloys used in overhead transmission lines. IOP Conf. Ser. Mater. Sci. Eng. 28, 012011 (2012)
7.
go back to reference Wong, E.W.; Sheehan, P.E.; Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997) Wong, E.W.; Sheehan, P.E.; Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)
8.
go back to reference Rutkowska, A.; Bawazeer, T.M.; Macpherson, J.V.; Unwin, P.R.: Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (OT-CNT-UMEs). Phys. Chem. Chem. Phys. 13, 5223 (2011) Rutkowska, A.; Bawazeer, T.M.; Macpherson, J.V.; Unwin, P.R.: Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (OT-CNT-UMEs). Phys. Chem. Chem. Phys. 13, 5223 (2011)
9.
go back to reference Shrivastava, P.; Alam, S.N.; Panda, D.; Sahoo, S.K.; Maity, T.; Biswas, K.: Effect of addition of multiwalled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium. Diam. Relat. Mater. 104, 107715 (2020) Shrivastava, P.; Alam, S.N.; Panda, D.; Sahoo, S.K.; Maity, T.; Biswas, K.: Effect of addition of multiwalled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium. Diam. Relat. Mater. 104, 107715 (2020)
10.
go back to reference Ţucureanu, V.; Matei, A.; Avram, A.M.: FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 46, 502–520 (2016) Ţucureanu, V.; Matei, A.; Avram, A.M.: FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 46, 502–520 (2016)
11.
go back to reference Peel, C.J.: Aluminium alloys for airframes – limitations and developments. Mater. Sci. Technol. 2, 1169–1175 (1986) Peel, C.J.: Aluminium alloys for airframes – limitations and developments. Mater. Sci. Technol. 2, 1169–1175 (1986)
12.
go back to reference Sridhar, I.; Narayanan, K.R.: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44, 1750–1756 (2009) Sridhar, I.; Narayanan, K.R.: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44, 1750–1756 (2009)
13.
go back to reference Liao, J.; Tan, M.-J.: Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol. 208, 42–48 (2011) Liao, J.; Tan, M.-J.: Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol. 208, 42–48 (2011)
14.
go back to reference Li, Q.; Rottmair, C.A.; Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos. Sci. Technol. 70, 2242–2247 (2010) Li, Q.; Rottmair, C.A.; Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos. Sci. Technol. 70, 2242–2247 (2010)
15.
go back to reference Pérez-Bustamante, R.; Estrada-Guel, I.; Amézaga-Madrid, P.; Miki-Yoshida, M.; Herrera-Ramírez, J.M.; Martínez-Sánchez, R.: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. J. Alloys Compd. 495, 399–402 (2010) Pérez-Bustamante, R.; Estrada-Guel, I.; Amézaga-Madrid, P.; Miki-Yoshida, M.; Herrera-Ramírez, J.M.; Martínez-Sánchez, R.: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. J. Alloys Compd. 495, 399–402 (2010)
16.
go back to reference Esawi, A.; Morsi, K.: Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A Appl. Sci. Manuf. 38, 646–650 (2007) Esawi, A.; Morsi, K.: Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A Appl. Sci. Manuf. 38, 646–650 (2007)
17.
go back to reference Ahn, J.H.; Wang, Y.L.; Kim, Y.J.; Kim, S.J.; Chung, H.S.: Synthesis of Carbon Nanotube-Reinforced Al Matrix Composites. Mater. Sci. Forum. 539–543, 860–865 (2007) Ahn, J.H.; Wang, Y.L.; Kim, Y.J.; Kim, S.J.; Chung, H.S.: Synthesis of Carbon Nanotube-Reinforced Al Matrix Composites. Mater. Sci. Forum. 539–543, 860–865 (2007)
18.
go back to reference Thomas, S.; Pillari, L.K.; Umasankar, V.; Pious, J.: Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Mater. Today Proc. 18, 4058–4066 (2019) Thomas, S.; Pillari, L.K.; Umasankar, V.; Pious, J.: Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Mater. Today Proc. 18, 4058–4066 (2019)
19.
go back to reference Simões, S.; Viana, F.; Reis, M.; Vieira, M.: Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication. Metals (Basel). 7, 279 (2017) Simões, S.; Viana, F.; Reis, M.; Vieira, M.: Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication. Metals (Basel). 7, 279 (2017)
20.
go back to reference Montazeri, A.; Javadpour, J.; Khavandi, A.; Tcharkhtchi, A.; Mohajeri, A.: Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater. Des. 31, 4202–4208 (2010) Montazeri, A.; Javadpour, J.; Khavandi, A.; Tcharkhtchi, A.; Mohajeri, A.: Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater. Des. 31, 4202–4208 (2010)
21.
go back to reference Sivananthan, S.; Gnanasekaran, S.; Samson, J.S.C.: Preparation and Characterization of Aluminium Nanocomposites Based on MWCNT. Appl. Mech. Mater. 550, 30–38 (2014) Sivananthan, S.; Gnanasekaran, S.; Samson, J.S.C.: Preparation and Characterization of Aluminium Nanocomposites Based on MWCNT. Appl. Mech. Mater. 550, 30–38 (2014)
22.
go back to reference Parvizian, F.; Rahimi, M.; Azimi, N.: Macro- and micromixing studies on a high frequency continuous tubular sonoreactor. Chem. Eng. Process. Process Intensif. 57–58, 8–15 (2012) Parvizian, F.; Rahimi, M.; Azimi, N.: Macro- and micromixing studies on a high frequency continuous tubular sonoreactor. Chem. Eng. Process. Process Intensif. 57–58, 8–15 (2012)
23.
go back to reference Monnier, H.; Wilhelm, A.M.; Delmas, H.: Effects of ultrasound on micromixing in flow cell. Chem. Eng. Sci. 55, 4009–4020 (2000) Monnier, H.; Wilhelm, A.M.; Delmas, H.: Effects of ultrasound on micromixing in flow cell. Chem. Eng. Sci. 55, 4009–4020 (2000)
24.
go back to reference Pasha, A.; Rajaprakash, B.M.; Nayeem Ahmed, M.; Manjunath, A.C.: Carbon nanotube reinforced metal matrix composites by powder metallurgy: a review. Mater. Sci. Res. India. 17(3), 201–206 (2020) Pasha, A.; Rajaprakash, B.M.; Nayeem Ahmed, M.; Manjunath, A.C.: Carbon nanotube reinforced metal matrix composites by powder metallurgy: a review. Mater. Sci. Res. India. 17(3), 201–206 (2020)
25.
go back to reference U. Sutharsini, M. Thanihaichelvan, R. Singh, Two-Step Sintering of Ceramics, in: Sinter. Funct. Mater., InTech, 2018. U. Sutharsini, M. Thanihaichelvan, R. Singh, Two-Step Sintering of Ceramics, in: Sinter. Funct. Mater., InTech, 2018.
26.
go back to reference Elshalakany, A.B.; Osman, T.A.; Khattab, A.; Azzam, B.; Zaki, M.: Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques. J. Nanomater. 2014, 1–14 (2014) Elshalakany, A.B.; Osman, T.A.; Khattab, A.; Azzam, B.; Zaki, M.: Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques. J. Nanomater. 2014, 1–14 (2014)
27.
go back to reference Devadiga, U.; Fernandes, P.: Taguchi analysis for sliding wear characteristics of carbon nanotube-flyash reinforced aluminium nanocomposites. Heliyon. 7, e06170 (2021) Devadiga, U.; Fernandes, P.: Taguchi analysis for sliding wear characteristics of carbon nanotube-flyash reinforced aluminium nanocomposites. Heliyon. 7, e06170 (2021)
28.
go back to reference R. Everett, Metal Matrix Composites: Processing and Interfaces, Elsevier, 1991. R. Everett, Metal Matrix Composites: Processing and Interfaces, Elsevier, 1991.
29.
go back to reference Noguchi, T.; Magario, A.; Fukazawa, S.; Shimizu, S.; Beppu, J.; Seki, M.: Carbon nanotube/aluminium composites with uniform dispersion. Mater. Trans. 45, 602–604 (2004) Noguchi, T.; Magario, A.; Fukazawa, S.; Shimizu, S.; Beppu, J.; Seki, M.: Carbon nanotube/aluminium composites with uniform dispersion. Mater. Trans. 45, 602–604 (2004)
30.
go back to reference Kumar, L.; Nasimul Alam, S.; Sahoo, S.K.: Mechanical properties, wear behavior and crystallographic texture of Al–multiwalled carbon nanotube composites developed by powder metallurgy route. J. Compos. Mater 51, 1099–1117 (2017) Kumar, L.; Nasimul Alam, S.; Sahoo, S.K.: Mechanical properties, wear behavior and crystallographic texture of Al–multiwalled carbon nanotube composites developed by powder metallurgy route. J. Compos. Mater 51, 1099–1117 (2017)
32.
go back to reference Kiang, C.-H.; Endo, M.; Ajayan, P.M.; Dresselhaus, G.; Dresselhaus, M.S.: Size effects in carbon nanotubes. Phys. Rev. Lett. 81, 1869–1872 (1998) Kiang, C.-H.; Endo, M.; Ajayan, P.M.; Dresselhaus, G.; Dresselhaus, M.S.: Size effects in carbon nanotubes. Phys. Rev. Lett. 81, 1869–1872 (1998)
33.
go back to reference Nishimura, K.; Okazaki, N.; Pan, L.; Nakayama, Y.: In situ study of iron catalysts for carbon nanotube growth using x-ray diffraction analysis. Jpn. J. Appl. Phys. 43, L471–L474 (2004) Nishimura, K.; Okazaki, N.; Pan, L.; Nakayama, Y.: In situ study of iron catalysts for carbon nanotube growth using x-ray diffraction analysis. Jpn. J. Appl. Phys. 43, L471–L474 (2004)
35.
go back to reference Sasaki, T.; Ebina, Y.; Kitami, Y.; Watanabe, M.; Oikawa, T.: Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide. J. Phys. Chem. B. 105, 6116–6121 (2001) Sasaki, T.; Ebina, Y.; Kitami, Y.; Watanabe, M.; Oikawa, T.: Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide. J. Phys. Chem. B. 105, 6116–6121 (2001)
36.
go back to reference Sasrimuang, S.; Chuchuen, O.; Artnaseaw, A.: Synthesis, characterization, and electrochemical properties of carbon nanotubes used as cathode materials for Al–air batteries from a renewable source of water hyacinth. Green Process. Synth. 9, 340–348 (2020) Sasrimuang, S.; Chuchuen, O.; Artnaseaw, A.: Synthesis, characterization, and electrochemical properties of carbon nanotubes used as cathode materials for Al–air batteries from a renewable source of water hyacinth. Green Process. Synth. 9, 340–348 (2020)
37.
go back to reference Kharissova, O.V.; Kharisov, B.I.: Variations of interlayer spacing in carbon nanotubes. RSC Adv. 4, 30807–30815 (2014) Kharissova, O.V.; Kharisov, B.I.: Variations of interlayer spacing in carbon nanotubes. RSC Adv. 4, 30807–30815 (2014)
38.
go back to reference Hsu, Y.-W.; Wu, C.-C.; Wu, S.-M.; Su, C.-C.: Synthesis and properties of carbon nanotube-grafted silica nanoarchitecture-reinforced poly(Lactic Acid). Materials (Basel). 10, 829 (2017) Hsu, Y.-W.; Wu, C.-C.; Wu, S.-M.; Su, C.-C.: Synthesis and properties of carbon nanotube-grafted silica nanoarchitecture-reinforced poly(Lactic Acid). Materials (Basel). 10, 829 (2017)
39.
go back to reference Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Shamiri, A.: A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis. 89, 143–151 (2010) Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Shamiri, A.: A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis. 89, 143–151 (2010)
40.
go back to reference Chiang, Y.-C.; Lin, W.-H.; Chang, Y.-C.: The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 257, 2401–2410 (2011) Chiang, Y.-C.; Lin, W.-H.; Chang, Y.-C.: The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 257, 2401–2410 (2011)
41.
go back to reference Misra, A.; Tyagi, P.; Rai, P.; Misra, D.S.: FTIR spectroscopy of multiwalled carbon nanotubes: a simple approachto study the nitrogen doping. J. Nanosci. Nanotechnol. 7, 1820–1823 (2007) Misra, A.; Tyagi, P.; Rai, P.; Misra, D.S.: FTIR spectroscopy of multiwalled carbon nanotubes: a simple approachto study the nitrogen doping. J. Nanosci. Nanotechnol. 7, 1820–1823 (2007)
42.
go back to reference Wang, H.; Wang, H.-L.; Jiang, W.-F.; Li, Z.-Q.: Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res. 43, 204–210 (2009) Wang, H.; Wang, H.-L.; Jiang, W.-F.; Li, Z.-Q.: Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res. 43, 204–210 (2009)
43.
go back to reference Wang, Y.; Alsmeyer, D.C.; McCreery, R.L.: Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2, 557–563 (1990) Wang, Y.; Alsmeyer, D.C.; McCreery, R.L.: Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2, 557–563 (1990)
44.
go back to reference Eklund, P.C.; Holden, J.M.; Jishi, R.A.: Vibrational modes of carbon nanotubes; Spectroscopy and theory. Carbon N. Y. 33, 959–972 (1995) Eklund, P.C.; Holden, J.M.; Jishi, R.A.: Vibrational modes of carbon nanotubes; Spectroscopy and theory. Carbon N. Y. 33, 959–972 (1995)
45.
go back to reference Lefrant, S.; Baibarac, M.; Baltog, I.; Mevellec, J.Y.; Godon, C.; Chauvet, O.: Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diam. Relat. Mater. 14, 867–872 (2005) Lefrant, S.; Baibarac, M.; Baltog, I.; Mevellec, J.Y.; Godon, C.; Chauvet, O.: Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diam. Relat. Mater. 14, 867–872 (2005)
46.
go back to reference Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon N. Y. 49, 2581–2602 (2011) Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon N. Y. 49, 2581–2602 (2011)
47.
go back to reference Robertson, J.: Amorphous carbon. Adv. Phys. 35, 317–374 (1986) Robertson, J.: Amorphous carbon. Adv. Phys. 35, 317–374 (1986)
48.
go back to reference Costa, S.; Borowiak-Palen, E.; Kruszyñska, M.; Bachmatiuk, A.; Kaleńczuk, R.J.: Characterization of carbon nanotubes by raman spectroscopy. Mater. Sci. Pol. 26, 433–441 (2008) Costa, S.; Borowiak-Palen, E.; Kruszyñska, M.; Bachmatiuk, A.; Kaleńczuk, R.J.: Characterization of carbon nanotubes by raman spectroscopy. Mater. Sci. Pol. 26, 433–441 (2008)
49.
go back to reference Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005) Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)
50.
go back to reference A. Ghavamian, M. Rybachuk, A. Öchsner, Defects in carbon nanotubes, in: Defects Adv. Electron. Mater. Nov. Low Dimens. Struct., Elsevier, 2018: pp. 87–136. A. Ghavamian, M. Rybachuk, A. Öchsner, Defects in carbon nanotubes, in: Defects Adv. Electron. Mater. Nov. Low Dimens. Struct., Elsevier, 2018: pp. 87–136.
51.
go back to reference Li, D.; Ye, Y.; Liao, X.; Qin, Q.H.: A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11, 1642–1650 (2018) Li, D.; Ye, Y.; Liao, X.; Qin, Q.H.: A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11, 1642–1650 (2018)
52.
go back to reference Turan, M.E.: Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites. J. Alloys Compd. 788, 352–360 (2019) Turan, M.E.: Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites. J. Alloys Compd. 788, 352–360 (2019)
53.
go back to reference Sharma, N.; Syed, A.N.; Ray, B.C.; Yadav, S.; Biswas, K.: Alumina–MWCNT composites: microstructural characterization and mechanical properties. J. Asian Ceram. Soc. 7, 1–19 (2019) Sharma, N.; Syed, A.N.; Ray, B.C.; Yadav, S.; Biswas, K.: Alumina–MWCNT composites: microstructural characterization and mechanical properties. J. Asian Ceram. Soc. 7, 1–19 (2019)
54.
go back to reference M Razeghi 2019 The carbon atom, in Myster. Carbon, IOP Publishing Ltd, Bristol M Razeghi 2019 The carbon atom, in Myster. Carbon, IOP Publishing Ltd, Bristol
55.
go back to reference Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G.: Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 113, 5806–5812 (2009) Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G.: Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 113, 5806–5812 (2009)
56.
go back to reference M Ginting S Taslima K Sebayang D Aryanto T Sudiro P Sebayang 2017 Preparation and characterization of zinc oxide doped with ferrite and chromium 1862 1 030062 M Ginting S Taslima K Sebayang D Aryanto T Sudiro P Sebayang 2017 Preparation and characterization of zinc oxide doped with ferrite and chromium 1862 1 030062
57.
go back to reference Li, X.; Lu, Q.; Zeng, X.; Wang, D.: Template- and micelle-free synthesis of rod-like gold nanoparticles with UVA irradiation. Optoelectron. Lett. 6, 1–5 (2010) Li, X.; Lu, Q.; Zeng, X.; Wang, D.: Template- and micelle-free synthesis of rod-like gold nanoparticles with UVA irradiation. Optoelectron. Lett. 6, 1–5 (2010)
58.
go back to reference Bhargava, R.; Sharma, P.K.; Kumar, S.; Pandey, A.C.; Kumar, N.: Consequence of doping mediated strain and the activation energy on the structural and optical properties of ZnO: Cr nanoparticles. J. Solid State Chem. 183, 1400–1408 (2010) Bhargava, R.; Sharma, P.K.; Kumar, S.; Pandey, A.C.; Kumar, N.: Consequence of doping mediated strain and the activation energy on the structural and optical properties of ZnO: Cr nanoparticles. J. Solid State Chem. 183, 1400–1408 (2010)
59.
go back to reference Khorsand Zak, A.; Abd, W.H.; Majid, M.E.; Abrishami, R.Y.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011) Khorsand Zak, A.; Abd, W.H.; Majid, M.E.; Abrishami, R.Y.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)
60.
go back to reference Manikandan, P.; Sieh, R.; Elayaperumal, A.; Le, H.R.; Basu, S.: Micro/Nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites. J. Nanomater. 2016, 1–10 (2016) Manikandan, P.; Sieh, R.; Elayaperumal, A.; Le, H.R.; Basu, S.: Micro/Nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites. J. Nanomater. 2016, 1–10 (2016)
61.
go back to reference Suresh, S.; Moorthi, N.S.V.: Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on A16061 MMC. Procedia Eng. 64, 1183–1190 (2013) Suresh, S.; Moorthi, N.S.V.: Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on A16061 MMC. Procedia Eng. 64, 1183–1190 (2013)
62.
go back to reference Li, G.; Xiong, B.: Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites. J. Alloys Compd. 697, 31–36 (2017) Li, G.; Xiong, B.: Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites. J. Alloys Compd. 697, 31–36 (2017)
63.
go back to reference Laha, T.; Agarwal, A.; McKechnie, T.; Seal, S.: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater. Sci. Eng. A. 381, 249–258 (2004) Laha, T.; Agarwal, A.; McKechnie, T.; Seal, S.: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater. Sci. Eng. A. 381, 249–258 (2004)
64.
go back to reference Izadi, H.; Gerlich, A.P.: Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon N. Y. 50, 4744–4749 (2012) Izadi, H.; Gerlich, A.P.: Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon N. Y. 50, 4744–4749 (2012)
65.
go back to reference Xu, C.L.; Wei, B.Q.; Ma, R.Z.; Liang, J.; Ma, X.K.; Wu, D.H.: Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon N. Y. 37, 855–858 (1999) Xu, C.L.; Wei, B.Q.; Ma, R.Z.; Liang, J.; Ma, X.K.; Wu, D.H.: Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon N. Y. 37, 855–858 (1999)
66.
go back to reference Guo, B.; Ni, S.; Yi, J.; Shen, R.; Tang, Z.; Du, Y.; Song, M.: Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater. Sci. Eng. A. 698, 282–288 (2017) Guo, B.; Ni, S.; Yi, J.; Shen, R.; Tang, Z.; Du, Y.; Song, M.: Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater. Sci. Eng. A. 698, 282–288 (2017)
67.
go back to reference Witbeck, B.; Spearot, D.E.: Role of grain boundary structure on diffusion and dissolution during Ni/Al nanolaminate combustion. J. Appl. Phys. 127, 125111 (2020) Witbeck, B.; Spearot, D.E.: Role of grain boundary structure on diffusion and dissolution during Ni/Al nanolaminate combustion. J. Appl. Phys. 127, 125111 (2020)
68.
go back to reference Kumar, A.; Chowrasia, M.K.; Banerjee, U.; Banerjee, M.K.: Enhancing structural stability and physical properties of silver added iron-MWCNT composite prepared by high energy ball milling and spark plasma sintering. Diam. Relat. Mater. 111, 108228 (2021) Kumar, A.; Chowrasia, M.K.; Banerjee, U.; Banerjee, M.K.: Enhancing structural stability and physical properties of silver added iron-MWCNT composite prepared by high energy ball milling and spark plasma sintering. Diam. Relat. Mater. 111, 108228 (2021)
69.
go back to reference Van Trinh, P.; Van Luan, N.; Minh, P.N.; Phuong, D.D.: Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique. Trans. Indian Inst. Met. 70, 947–955 (2017) Van Trinh, P.; Van Luan, N.; Minh, P.N.; Phuong, D.D.: Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique. Trans. Indian Inst. Met. 70, 947–955 (2017)
70.
go back to reference Wu, Y.; Kim, G.-Y.: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211, 1341–1347 (2011) Wu, Y.; Kim, G.-Y.: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211, 1341–1347 (2011)
71.
go back to reference Bakshi, S.R.; Lahiri, D.; Agarwal, A.: Carbon nanotube reinforced metal matrix composites - a review. Int. Mater. Rev. 55, 41–64 (2010) Bakshi, S.R.; Lahiri, D.; Agarwal, A.: Carbon nanotube reinforced metal matrix composites - a review. Int. Mater. Rev. 55, 41–64 (2010)
72.
go back to reference Esawi, A.M.K.; El Borady, M.A.: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486–492 (2008) Esawi, A.M.K.; El Borady, M.A.: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486–492 (2008)
73.
go back to reference Feng, Y.; Yuan, H.L.; Zhang, M.: Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Charact. 55, 211–218 (2005) Feng, Y.; Yuan, H.L.; Zhang, M.: Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Charact. 55, 211–218 (2005)
74.
go back to reference Arif, S.; Alam, M.T.; Aziz, T.; Ansari, A.H.: Morphological and Wear behaviour of new Al-SiC micro -SiC nano hybrid nanocomposites fabricated through powder metallurgy. Mater. Res. Express 5, 046534 (2018) Arif, S.; Alam, M.T.; Aziz, T.; Ansari, A.H.: Morphological and Wear behaviour of new Al-SiC micro -SiC nano hybrid nanocomposites fabricated through powder metallurgy. Mater. Res. Express 5, 046534 (2018)
75.
go back to reference Huang, H.; Fan, G.; Tan, Z.; Xiong, D.-B.; Guo, Q.; Guo, C.; Li, Z.; Zhang, D.: Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy. Mater. Sci. Eng. A. 699, 55–61 (2017) Huang, H.; Fan, G.; Tan, Z.; Xiong, D.-B.; Guo, Q.; Guo, C.; Li, Z.; Zhang, D.: Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy. Mater. Sci. Eng. A. 699, 55–61 (2017)
76.
go back to reference Shivaramu, H.T.; Umashankar, K.S.: Dry sliding wear behaviour of multi walled carbon nanotubes reinforced aluminium composites produced by powder metallurgy technique. Mater Res Express 6(11), 11507 (2019) Shivaramu, H.T.; Umashankar, K.S.: Dry sliding wear behaviour of multi walled carbon nanotubes reinforced aluminium composites produced by powder metallurgy technique. Mater Res Express 6(11), 11507 (2019)
77.
go back to reference Soorya Prakash, K.; Gopal, P.M.; Anburose, D.; Kavimani, V.: Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites. Ain Shams Eng J 9, 1489–1496 (2018) Soorya Prakash, K.; Gopal, P.M.; Anburose, D.; Kavimani, V.: Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites. Ain Shams Eng J 9, 1489–1496 (2018)
78.
go back to reference Savaşkan, T.; Bican, O.: Dry sliding friction and wear properties of Al–25Zn–3Cu–(0–5)Si alloys in the as-cast and heat-treated conditions. Tribol. Lett. 40, 327–336 (2010) Savaşkan, T.; Bican, O.: Dry sliding friction and wear properties of Al–25Zn–3Cu–(0–5)Si alloys in the as-cast and heat-treated conditions. Tribol. Lett. 40, 327–336 (2010)
79.
go back to reference Praveen Kumar, M.V.; Seenappa, X.X.: Dual matrix and reinforcement particle size (SPS and DPS) composites: Influence on tribological behavior of particulate aluminum-SiC-Gr metal matrix composites. Mater. Today Proc. 24, 1644–1653 (2020) Praveen Kumar, M.V.; Seenappa, X.X.: Dual matrix and reinforcement particle size (SPS and DPS) composites: Influence on tribological behavior of particulate aluminum-SiC-Gr metal matrix composites. Mater. Today Proc. 24, 1644–1653 (2020)
80.
go back to reference Kim, I.-Y.; Lee, J.-H.; Lee, G.-S.; Baik, S.-H.; Kim, Y.-J.; Lee, Y.-Z.: Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267, 593–598 (2009) Kim, I.-Y.; Lee, J.-H.; Lee, G.-S.; Baik, S.-H.; Kim, Y.-J.; Lee, Y.-Z.: Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267, 593–598 (2009)
81.
go back to reference Kumar, S.; Sharma, V.; Panwar, R.S.; Pandey, O.P.: Wear behavior of dual particle size (DPS) zircon sand reinforced aluminum alloy. Tribol. Lett. 47, 231–251 (2012) Kumar, S.; Sharma, V.; Panwar, R.S.; Pandey, O.P.: Wear behavior of dual particle size (DPS) zircon sand reinforced aluminum alloy. Tribol. Lett. 47, 231–251 (2012)
82.
go back to reference PR Matli, R.A. Shakoor, A.M.A. Mohamed Development of Metal Matrix Composites Using Microwave Sintering Technique, in: Sinter. Funct. Mater., InTech, 2018 PR Matli, R.A. Shakoor, A.M.A. Mohamed Development of Metal Matrix Composites Using Microwave Sintering Technique, in: Sinter. Funct. Mater., InTech, 2018
83.
go back to reference Davis, L.C.; Andres, C.; Allison, J.E.: Microstructure and strengthening of metal matrix composites. Mater. Sci. Eng. A. 249, 40–45 (1998) Davis, L.C.; Andres, C.; Allison, J.E.: Microstructure and strengthening of metal matrix composites. Mater. Sci. Eng. A. 249, 40–45 (1998)
84.
go back to reference Hussain, M.Z.; Khan, U.; Chanda, A.K.; Jangid, R.: Fabrication and Hardness Analysis of F-MWCNTs Reinforced Aluminium Nanocomposite. Procedia Eng. 173, 1611–1618 (2017) Hussain, M.Z.; Khan, U.; Chanda, A.K.; Jangid, R.: Fabrication and Hardness Analysis of F-MWCNTs Reinforced Aluminium Nanocomposite. Procedia Eng. 173, 1611–1618 (2017)
85.
go back to reference Padmavathi, K.R.; Ramakrishnan, R.: Tribological Behaviour of Aluminium Hybrid Metal Matrix Composite. Procedia Eng. 97, 660–667 (2014) Padmavathi, K.R.; Ramakrishnan, R.: Tribological Behaviour of Aluminium Hybrid Metal Matrix Composite. Procedia Eng. 97, 660–667 (2014)
86.
go back to reference Ardila-Rodríguez, L.A.; Menezes, B.R.C.; Pereira, L.A.; Oliveira, A.C.; Travessa, D.N.: Titanium dioxide protection against Al4C3 formation during fabrication of aluminum-TiO2 coated MWCNT composite. J. Alloys Compd. 780, 772–782 (2019) Ardila-Rodríguez, L.A.; Menezes, B.R.C.; Pereira, L.A.; Oliveira, A.C.; Travessa, D.N.: Titanium dioxide protection against Al4C3 formation during fabrication of aluminum-TiO2 coated MWCNT composite. J. Alloys Compd. 780, 772–782 (2019)
87.
go back to reference Kwon, H.; Park, D.H.; Silvain, J.F.; Kawasaki, A.: Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos. Sci. Technol. 70, 546–550 (2010) Kwon, H.; Park, D.H.; Silvain, J.F.; Kawasaki, A.: Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos. Sci. Technol. 70, 546–550 (2010)
88.
go back to reference Babu, J.S.S.; Lee, C.H.; Kang, C.G.: Study of the mechanical and workability properties of extruded aluminium (Al6061) based composites reinforced with MWCNTs. J. Mater. Res. Technol. 9, 5278–5292 (2020) Babu, J.S.S.; Lee, C.H.; Kang, C.G.: Study of the mechanical and workability properties of extruded aluminium (Al6061) based composites reinforced with MWCNTs. J. Mater. Res. Technol. 9, 5278–5292 (2020)
89.
go back to reference Thirugnanasambantham, K.G.; Sankaramoorthy, T.; Karthikeyan, R.; Santhosh Kumar, K.: A comprehensive review: Influence of the concentration of carbon nanotubes (CNT) on mechanical characteristics of aluminium metal matrix composites: part 1. Mater. Today Proc. 45, 2561–2566 (2021) Thirugnanasambantham, K.G.; Sankaramoorthy, T.; Karthikeyan, R.; Santhosh Kumar, K.: A comprehensive review: Influence of the concentration of carbon nanotubes (CNT) on mechanical characteristics of aluminium metal matrix composites: part 1. Mater. Today Proc. 45, 2561–2566 (2021)
90.
go back to reference Singh, H.; Bhowmick, H.: Lubrication characteristics and wear mechanism mapping for hybrid aluminium metal matrix composite sliding under surfactant functionalized MWCNT-oil. Tribol. Int. 145, 106152 (2020) Singh, H.; Bhowmick, H.: Lubrication characteristics and wear mechanism mapping for hybrid aluminium metal matrix composite sliding under surfactant functionalized MWCNT-oil. Tribol. Int. 145, 106152 (2020)
91.
go back to reference Sangeetha, M.; Prakash, S.; Ramya, D.: Wear properties estimation and characterization of coated ceramics with multiwall carbon nano tubes (MWCNT) reinforced in aluminium matrix composites. Mater. Today Proc. 3, 2537–2546 (2016) Sangeetha, M.; Prakash, S.; Ramya, D.: Wear properties estimation and characterization of coated ceramics with multiwall carbon nano tubes (MWCNT) reinforced in aluminium matrix composites. Mater. Today Proc. 3, 2537–2546 (2016)
Metadata
Title
Ex Situ Fabrication of Multiwalled Carbon Nanotube-Reinforced Aluminum Nanocomposite via Conventional Sintering and SPS Techniques
Authors
Pankaj Shrivastava
Syed Nasimul Alam
Krishanu Biswas
Publication date
29-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06386-w

Other articles of this Issue 7/2022

Arabian Journal for Science and Engineering 7/2022 Go to the issue

Premium Partners