Skip to main content
Top
Published in: Journal of Materials Science 19/2019

09-07-2019 | Energy materials

Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries

Authors: Lijun Wang, Yanzhi Wang, Xiaheng Yang, Jinlong Wang, Xiduo Yang, Jiantao Tang

Published in: Journal of Materials Science | Issue 19/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

P2-type Na2/3Co0.25Mn0.705Si0.045O2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P63/mmc), in which Si4+ ions substitute the Mn site of P2-Na2/3Co0.25Mn0.75O2 (NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g−1 at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g−1 at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, TM–O and O–O bonds, more stable occupancy rate in the Nae site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na+ extraction and intercalation. Hence, SiO2 as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef
2.
go back to reference Li F, Zhou Z (2017) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14:1702961CrossRef Li F, Zhou Z (2017) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14:1702961CrossRef
3.
go back to reference Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef
4.
go back to reference Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Sour 343:345–353CrossRef Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Sour 343:345–353CrossRef
5.
go back to reference Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T (2017) High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci 10:1051–1074CrossRef Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T (2017) High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci 10:1051–1074CrossRef
6.
go back to reference Wang L, Sun YG, Hu LL et al (2017) Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5:8752–8761CrossRef Wang L, Sun YG, Hu LL et al (2017) Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5:8752–8761CrossRef
7.
go back to reference Wu ZG, Li JT, Zhong YJ et al (2017) Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium ion batteries. ACS Appl Mater Interfaces 9:21267–21275CrossRef Wu ZG, Li JT, Zhong YJ et al (2017) Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium ion batteries. ACS Appl Mater Interfaces 9:21267–21275CrossRef
8.
go back to reference Chagas LG, Buchholz D, Vaalma C et al (2014) P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. J Mater Chem A 2:20263–20270CrossRef Chagas LG, Buchholz D, Vaalma C et al (2014) P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. J Mater Chem A 2:20263–20270CrossRef
9.
go back to reference Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. J Cheminf 46:5343–5364 Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. J Cheminf 46:5343–5364
10.
go back to reference Delmas C, Fouassier C, Hagenmuller P (2007) Structural classification and properties of the layered oxides. Phys B 99:81–85CrossRef Delmas C, Fouassier C, Hagenmuller P (2007) Structural classification and properties of the layered oxides. Phys B 99:81–85CrossRef
11.
go back to reference Billaud J, Singh G, Armstrong AR et al (2014) Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391CrossRef Billaud J, Singh G, Armstrong AR et al (2014) Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391CrossRef
12.
go back to reference Li Y, Yang Z, Xu S et al (2015) Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2:15–31 Li Y, Yang Z, Xu S et al (2015) Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2:15–31
13.
go back to reference Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon JM (2017) Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of na-ion cells based on P2-NaxMO2 electrodes. Chem Mater 29:5948–5956CrossRef Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon JM (2017) Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of na-ion cells based on P2-NaxMO2 electrodes. Chem Mater 29:5948–5956CrossRef
14.
go back to reference Yong W, Hu G, Peng Z et al (2018) Influence of Li substitution on the structure and electrochemical performance of P2-type Na0.67Ni0.2Fe0.15Mn0.65O2 cathode materials for sodium ion batteries. J Power Sour 396:639–647CrossRef Yong W, Hu G, Peng Z et al (2018) Influence of Li substitution on the structure and electrochemical performance of P2-type Na0.67Ni0.2Fe0.15Mn0.65O2 cathode materials for sodium ion batteries. J Power Sour 396:639–647CrossRef
15.
go back to reference Guo S, Sun Y, Liu P et al (2018) Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Sci Bull 63:376–384CrossRef Guo S, Sun Y, Liu P et al (2018) Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Sci Bull 63:376–384CrossRef
16.
go back to reference Kumakura S, Tahara Y, Kubota K et al (2016) Sodium and manganese stoichiometry of P2-Type Na2/3MnO2. Angew Chem Int Edit 55:12760–12763CrossRef Kumakura S, Tahara Y, Kubota K et al (2016) Sodium and manganese stoichiometry of P2-Type Na2/3MnO2. Angew Chem Int Edit 55:12760–12763CrossRef
17.
go back to reference Guo S, Liu P, Yu H et al (2015) A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew Chem 127:5992–5997CrossRef Guo S, Liu P, Yu H et al (2015) A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew Chem 127:5992–5997CrossRef
18.
go back to reference Ma T, Xu GL, Zeng X et al (2017) Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J Power Sour 341:114–121CrossRef Ma T, Xu GL, Zeng X et al (2017) Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J Power Sour 341:114–121CrossRef
19.
go back to reference Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H, Zhou C (2016) Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34CrossRef Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H, Zhou C (2016) Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34CrossRef
20.
go back to reference Nicolas B, Hartung S, Joseph BF et al (2016) P2-NaxCoyMn1–yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability. Chem Mater 28:2041–2051CrossRef Nicolas B, Hartung S, Joseph BF et al (2016) P2-NaxCoyMn1–yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability. Chem Mater 28:2041–2051CrossRef
21.
go back to reference Wang Q, Hu E, Pan Y et al (2017) Utilizing Co2+/Co3+ redox couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 cathode for sodium-ion batteries. Adv Sci 4:1700219–1700226CrossRef Wang Q, Hu E, Pan Y et al (2017) Utilizing Co2+/Co3+ redox couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 cathode for sodium-ion batteries. Adv Sci 4:1700219–1700226CrossRef
22.
go back to reference Li ZY, Zhang J, Gao R, Zhang H, Hu Z, Liu X (2016) Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials for sodium-ion batteries. Adv Mater Interfaces 8:15439–15448CrossRef Li ZY, Zhang J, Gao R, Zhang H, Hu Z, Liu X (2016) Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials for sodium-ion batteries. Adv Mater Interfaces 8:15439–15448CrossRef
23.
go back to reference Wang H, Li ZY, Yang W, Yang J, Chen D, Su C, Liu X (2018) Structure modulation and performance optimization of P2-Na0.7Mn0.75Fe0.25-x-yNixCoyO2 through a synergistic substitution of Ni and Co for Fe. Electrochim Acta 277:88–99CrossRef Wang H, Li ZY, Yang W, Yang J, Chen D, Su C, Liu X (2018) Structure modulation and performance optimization of P2-Na0.7Mn0.75Fe0.25-x-yNixCoyO2 through a synergistic substitution of Ni and Co for Fe. Electrochim Acta 277:88–99CrossRef
24.
go back to reference Zhou D, Huang W, Zhao F (2018) P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries. Solid State Ion 322:18–23CrossRef Zhou D, Huang W, Zhao F (2018) P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries. Solid State Ion 322:18–23CrossRef
25.
go back to reference Hemalatha K, Jayakumar M, Prakash AS (2018) Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1−xO2 cathodes for sodium-ion batteries. Dalton Trans 47:1223–1232CrossRef Hemalatha K, Jayakumar M, Prakash AS (2018) Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1−xO2 cathodes for sodium-ion batteries. Dalton Trans 47:1223–1232CrossRef
26.
go back to reference Zhu YE, Qi X, Chen X, Hou X, Zhang X, Wei J, Hub Y, Zhou Z (2016) P2-Na0.67Co0.5Mn0.5O2 cathode materials with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109CrossRef Zhu YE, Qi X, Chen X, Hou X, Zhang X, Wei J, Hub Y, Zhou Z (2016) P2-Na0.67Co0.5Mn0.5O2 cathode materials with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109CrossRef
27.
go back to reference Wang Y, Tang J, Yang X (2018) A study on electrochemical properties of P2-type Na-Mn-Co-Cr-O cathodes for sodium-ion batteries. Inorg Chem Front 5:577–584CrossRef Wang Y, Tang J, Yang X (2018) A study on electrochemical properties of P2-type Na-Mn-Co-Cr-O cathodes for sodium-ion batteries. Inorg Chem Front 5:577–584CrossRef
28.
go back to reference Tang J, Wang Y, Wang L, Zhao J, Li Y (2018) Excellent cycle stability of P2-Na0.67Co0.25Mn0.705V0.045O2@NaV6O15 composite cathode for sodium ion battery. Mater Chem Phys 18:0254–0584 Tang J, Wang Y, Wang L, Zhao J, Li Y (2018) Excellent cycle stability of P2-Na0.67Co0.25Mn0.705V0.045O2@NaV6O15 composite cathode for sodium ion battery. Mater Chem Phys 18:0254–0584
29.
go back to reference Vaalma C, Buchholz D, Passerini S (2017) Beneficial effect of boron in layered sodium-ion cathode materials: the example of Na2/3B0.11Mn0.89O2. J Power Sour 364:33–40CrossRef Vaalma C, Buchholz D, Passerini S (2017) Beneficial effect of boron in layered sodium-ion cathode materials: the example of Na2/3B0.11Mn0.89O2. J Power Sour 364:33–40CrossRef
30.
go back to reference Nageswaras S, Keppeler M, Kim SJ, Srinivasan M (2017) Morphology controlled Si modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries. J Power Sour 346:89–96CrossRef Nageswaras S, Keppeler M, Kim SJ, Srinivasan M (2017) Morphology controlled Si modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries. J Power Sour 346:89–96CrossRef
31.
go back to reference Bini M, Boni P, Mustarelli P, Quinzeni I, Bruni G, Capsoni D (2018) Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries. Solid State Ion 320:1–6CrossRef Bini M, Boni P, Mustarelli P, Quinzeni I, Bruni G, Capsoni D (2018) Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries. Solid State Ion 320:1–6CrossRef
32.
go back to reference Keppeler M, Nageswaran S, Kim SJ, Srinivasan M (2016) Silicon doping for high voltage spinel LiNi0.5Mn1.5O4 towards superior electrochemical performance of lithium ion batteries. Electrochim Acta 213:904–910CrossRef Keppeler M, Nageswaran S, Kim SJ, Srinivasan M (2016) Silicon doping for high voltage spinel LiNi0.5Mn1.5O4 towards superior electrochemical performance of lithium ion batteries. Electrochim Acta 213:904–910CrossRef
33.
go back to reference Zhang S, Liu Y, Zhang N, Zhao K, Yang J, He S (2016) O3-type NaNi0.33Li0.11Ti0.56O2-based electrode for symmetric sodium ion cell. J Power Sour 329:1–7CrossRef Zhang S, Liu Y, Zhang N, Zhao K, Yang J, He S (2016) O3-type NaNi0.33Li0.11Ti0.56O2-based electrode for symmetric sodium ion cell. J Power Sour 329:1–7CrossRef
34.
go back to reference Xu H, Zong J, Liu X (2018) P2-type Na0.67Mn0.6Fe0.4-x-yZnxNiyO2 cathode material with high-capacity for sodium-ion battery. Ionics 24:1939–1946CrossRef Xu H, Zong J, Liu X (2018) P2-type Na0.67Mn0.6Fe0.4-x-yZnxNiyO2 cathode material with high-capacity for sodium-ion battery. Ionics 24:1939–1946CrossRef
35.
go back to reference Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312CrossRef Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312CrossRef
36.
go back to reference Zhang X, Yu C, Huang X (2012) Novel composites Li[LixNi0.34–x Mn0.47Co0.19]O2 (0.18 ≤ x ≤ 0.21): synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries. Electrochim Acta 81:233–238CrossRef Zhang X, Yu C, Huang X (2012) Novel composites Li[LixNi0.34–x Mn0.47Co0.19]O2 (0.18 ≤ x ≤ 0.21): synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries. Electrochim Acta 81:233–238CrossRef
37.
go back to reference Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloy Compd 674:447–454CrossRef Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloy Compd 674:447–454CrossRef
38.
go back to reference Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y (2017) Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. J Alloy Compd 690:589–597CrossRef Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y (2017) Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. J Alloy Compd 690:589–597CrossRef
39.
go back to reference Wang Y, Zhao F, Qian Y, Ji H (2018) A high-performance P2-Na0.70Mn0.80Co0.15Zr0.05O2 cathode for sodium-ion batteries. ACS Appl Mater Interfaces 10:42380–42386CrossRef Wang Y, Zhao F, Qian Y, Ji H (2018) A high-performance P2-Na0.70Mn0.80Co0.15Zr0.05O2 cathode for sodium-ion batteries. ACS Appl Mater Interfaces 10:42380–42386CrossRef
40.
go back to reference Song X, Zhou X, Deng Y, Nan J, Shu D, Cai Z, Huang Y, Zhang X (2018) Synthesis of NaxMn0.54Ni0.13Fe0.13O2 with P2-type hexagonal phase as high-performance cathode materials for sodium-ion batteries. J Alloy Compd 732:88–94CrossRef Song X, Zhou X, Deng Y, Nan J, Shu D, Cai Z, Huang Y, Zhang X (2018) Synthesis of NaxMn0.54Ni0.13Fe0.13O2 with P2-type hexagonal phase as high-performance cathode materials for sodium-ion batteries. J Alloy Compd 732:88–94CrossRef
41.
go back to reference Wang K, Wu ZG, Zhang T et al (2016) P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochim Acta 216:51–57CrossRef Wang K, Wu ZG, Zhang T et al (2016) P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochim Acta 216:51–57CrossRef
42.
go back to reference Bao S, Luo SH, Wang Z, Yana S, Wang Q, Lia J (2018) Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J Power Sour 396:404–411CrossRef Bao S, Luo SH, Wang Z, Yana S, Wang Q, Lia J (2018) Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J Power Sour 396:404–411CrossRef
43.
go back to reference Li ZY, Gao R, Sun L, Hu Z, Liu X (2015) Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-Ion batteries. J Mater Chem A 3:16272–16278CrossRef Li ZY, Gao R, Sun L, Hu Z, Liu X (2015) Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-Ion batteries. J Mater Chem A 3:16272–16278CrossRef
44.
go back to reference Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2-Na2/3MnyCo1−yO2 as cathode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551CrossRef Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2-Na2/3MnyCo1−yO2 as cathode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551CrossRef
45.
go back to reference Wang PF, You Y, Yin YX, Guo YG (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4:17660–17664CrossRef Wang PF, You Y, Yin YX, Guo YG (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4:17660–17664CrossRef
46.
go back to reference Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J Mater Chem A 3:20708–20714CrossRef Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J Mater Chem A 3:20708–20714CrossRef
47.
go back to reference Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S (2014) Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J Mater Chem A 2:13415–13421CrossRef Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S (2014) Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J Mater Chem A 2:13415–13421CrossRef
48.
go back to reference Bao S, Luo SH, Wang ZY, Wang Q, Hao AM, Zhang YH, Wang YL (2017) The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type NaxNi0.167Co0.167Mn0.67O2 for sodium ion batteries. J Power Sour 362:323–331CrossRef Bao S, Luo SH, Wang ZY, Wang Q, Hao AM, Zhang YH, Wang YL (2017) The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type NaxNi0.167Co0.167Mn0.67O2 for sodium ion batteries. J Power Sour 362:323–331CrossRef
49.
go back to reference Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behavior as cathode in sodium cells. J Mater Chem 12:1142–1147CrossRef Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behavior as cathode in sodium cells. J Mater Chem 12:1142–1147CrossRef
50.
go back to reference Luo C, Langrock A, Fan X, Liang Y, Wang C (2017) P2-type transition metal oxides for high performance Na-Ion battery cathodes. J Mater Chem A 5:18214–18220CrossRef Luo C, Langrock A, Fan X, Liang Y, Wang C (2017) P2-type transition metal oxides for high performance Na-Ion battery cathodes. J Mater Chem A 5:18214–18220CrossRef
51.
go back to reference Pang WL, Zhang XH, Guo JZ et al (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sour 356:80–88CrossRef Pang WL, Zhang XH, Guo JZ et al (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sour 356:80–88CrossRef
52.
go back to reference Gao G, Tie D, Ma H et al (2018) Interface-rich mixed P2 + T phase NaxCo0.1Mn0.9O2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. J Mater Chem A 6:6675–6684CrossRef Gao G, Tie D, Ma H et al (2018) Interface-rich mixed P2 + T phase NaxCo0.1Mn0.9O2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. J Mater Chem A 6:6675–6684CrossRef
53.
go back to reference Ramasamy HV, Kaliyappan K, Thangavel R et al (2017) Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J Mater Chem A 5:8408–8415CrossRef Ramasamy HV, Kaliyappan K, Thangavel R et al (2017) Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J Mater Chem A 5:8408–8415CrossRef
54.
go back to reference Park SB, Shin HC, Lee WG, Cho WI, Jang H (2008) Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides. J Power Sour 180:597–601CrossRef Park SB, Shin HC, Lee WG, Cho WI, Jang H (2008) Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides. J Power Sour 180:597–601CrossRef
55.
go back to reference Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L (2015) Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem Asian J 10:661–666CrossRef Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L (2015) Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem Asian J 10:661–666CrossRef
57.
go back to reference Xu X, Ji S, Gao R, Liu J (2015) Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries. RSC Adv 5:51454–51460CrossRef Xu X, Ji S, Gao R, Liu J (2015) Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries. RSC Adv 5:51454–51460CrossRef
58.
go back to reference Rangasamy VS, Zhang L, Seo JW, Locquet JP, Thayumanasundaram S (2017) Enhanced electrochemical performance of Na2/3[Mn0.55Ni0.30Co0.15]O2 positive electrode in sodium-ion batteries by functionalized multi-walled carbon nanotubes. Electrochim Acta 237:29–36CrossRef Rangasamy VS, Zhang L, Seo JW, Locquet JP, Thayumanasundaram S (2017) Enhanced electrochemical performance of Na2/3[Mn0.55Ni0.30Co0.15]O2 positive electrode in sodium-ion batteries by functionalized multi-walled carbon nanotubes. Electrochim Acta 237:29–36CrossRef
59.
go back to reference Xu GL, Amine R, Xu YF et al (2017) Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ Sci 10:1677–1693CrossRef Xu GL, Amine R, Xu YF et al (2017) Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ Sci 10:1677–1693CrossRef
Metadata
Title
Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries
Authors
Lijun Wang
Yanzhi Wang
Xiaheng Yang
Jinlong Wang
Xiduo Yang
Jiantao Tang
Publication date
09-07-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03807-y

Other articles of this Issue 19/2019

Journal of Materials Science 19/2019 Go to the issue

Premium Partners