Skip to main content
Top
Published in: Journal of Coatings Technology and Research 4/2019

28-02-2019

Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces

Authors: Bryan B. Pajarito, Carlo Angelo L. Cayabyab, Patrick Aldrei C. Costales, Jasmine R. Francisco

Published in: Journal of Coatings Technology and Research | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three-dimensional (3D) printers utilize polylactic acid (PLA) as feedstock filament due to its renewability, low extrusion temperature, and good mechanical properties. One major drawback of 3D-printed PLA products is their limited application in harsh environments due to their low hydrolytic resistance. We developed exfoliated graphite (EG)/acrylic composite films as protective coatings of 3D-printed PLA surfaces. This paper reports on the water contact angles (WCAs) and weight change behavior of 3D-printed PLA surfaces coated with EG/acrylic composite films under humid exposure. We obtained hydrophobic films (WCA > 90°) after adding EG platelets to the acrylic resin. Moreover, the films retain their hydrophobicity after a long humid exposure. The films also reduce the water absorption of 3D-printed PLA surfaces. The addition of stearic acid in the coating formulation further enhances the water resistance of the films. In conclusion, the hydrophobic EG/acrylic composite films improve the hydrolytic resistance of 3D-printed PLA surfaces. The use of EG over defect-free graphene to create hydrophobic polymeric films will need to be considered in future studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berman, B, “3-D Printing: The New Industrial Revolution.” Bus. Horizons, 55 155–162 (2012)CrossRef Berman, B, “3-D Printing: The New Industrial Revolution.” Bus. Horizons, 55 155–162 (2012)CrossRef
2.
go back to reference Guo, N, Leu, MC, “Additive Manufacturing: Technology, Applications and Research Needs.” Front. Mech. Eng., 8 215–243 (2013)CrossRef Guo, N, Leu, MC, “Additive Manufacturing: Technology, Applications and Research Needs.” Front. Mech. Eng., 8 215–243 (2013)CrossRef
3.
go back to reference Stansbury, JW, Idacavage, MJ, “3D Printing with Polymers: Challenges Among Expanding Options and Opportunities.” Dent. Mater., 32 54–64 (2016)CrossRef Stansbury, JW, Idacavage, MJ, “3D Printing with Polymers: Challenges Among Expanding Options and Opportunities.” Dent. Mater., 32 54–64 (2016)CrossRef
4.
go back to reference Lehermeier, HJ, Dorgan, JR, Way, JD, “Gas Permeation Properties of Poly (Lactic Acid).” J. Membr. Sci., 190 243–251 (2001)CrossRef Lehermeier, HJ, Dorgan, JR, Way, JD, “Gas Permeation Properties of Poly (Lactic Acid).” J. Membr. Sci., 190 243–251 (2001)CrossRef
5.
go back to reference Lim, LT, Auras, R, Rubino, M, “Processing Technologies for Poly (Lactic Acid).” Prog. Polym. Sci., 33 820–852 (2008)CrossRef Lim, LT, Auras, R, Rubino, M, “Processing Technologies for Poly (Lactic Acid).” Prog. Polym. Sci., 33 820–852 (2008)CrossRef
6.
go back to reference Hassan, E, Wei, Y, Jiao, H, Muhuo, Y, “Dynamic Mechanical Properties and Thermal Stability of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends Composites.” J. Fiber Bioeng. Inf., 6 85–94 (2013)CrossRef Hassan, E, Wei, Y, Jiao, H, Muhuo, Y, “Dynamic Mechanical Properties and Thermal Stability of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends Composites.” J. Fiber Bioeng. Inf., 6 85–94 (2013)CrossRef
7.
go back to reference Huang, HD, Ren, PG, Xu, JZ, Xu, L, Zhong, GJ, Hsiao, BS, Li, ZM, “Improved Barrier Properties of Poly(Lactic Acid) with Randomly Dispersed Graphene Oxide Nanosheets.” J. Membr. Sci., 464 110–118 (2014)CrossRef Huang, HD, Ren, PG, Xu, JZ, Xu, L, Zhong, GJ, Hsiao, BS, Li, ZM, “Improved Barrier Properties of Poly(Lactic Acid) with Randomly Dispersed Graphene Oxide Nanosheets.” J. Membr. Sci., 464 110–118 (2014)CrossRef
8.
go back to reference Jin, Y, Wan, Y, Zhang, B, Liu, Z, “Modeling of the Chemical Finishing Process for Polylactic Acid Parts in Fused Deposition Modeling and Investigation of its Tensile Properties.” J. Mater. Process. Technol., 240 233–239 (2017)CrossRef Jin, Y, Wan, Y, Zhang, B, Liu, Z, “Modeling of the Chemical Finishing Process for Polylactic Acid Parts in Fused Deposition Modeling and Investigation of its Tensile Properties.” J. Mater. Process. Technol., 240 233–239 (2017)CrossRef
9.
go back to reference Siparsky, GL, Voorhees, KJ, Miao, F, “Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis.” J. Polym. Environ., 6 31–41 (1998)CrossRef Siparsky, GL, Voorhees, KJ, Miao, F, “Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis.” J. Polym. Environ., 6 31–41 (1998)CrossRef
10.
go back to reference Rhim, JW, Hong, SI, Ha, CS, “Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Films.” LWT Food Sci. Technol., 42 612–617 (2009)CrossRef Rhim, JW, Hong, SI, Ha, CS, “Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Films.” LWT Food Sci. Technol., 42 612–617 (2009)CrossRef
11.
go back to reference Pantani, R, Gorrasi, G, Vigliotta, G, Murariu, M, Dubois, P, “PLA-ZnO Nanocomposite Films: Water Vapor Barrier Properties and Specific End-Use Characteristics.” Eur. Polym. J., 49 3471–3482 (2013)CrossRef Pantani, R, Gorrasi, G, Vigliotta, G, Murariu, M, Dubois, P, “PLA-ZnO Nanocomposite Films: Water Vapor Barrier Properties and Specific End-Use Characteristics.” Eur. Polym. J., 49 3471–3482 (2013)CrossRef
12.
go back to reference Gorrasi, G, Pantani, R, Murariu, M, Dubois, P, “PLA/Halloysite Nanocomposite Films: Water Vapor Barrier Properties and Specific Key Characteristics.” Macromol. Mater. Eng., 299 104–115 (2014)CrossRef Gorrasi, G, Pantani, R, Murariu, M, Dubois, P, “PLA/Halloysite Nanocomposite Films: Water Vapor Barrier Properties and Specific Key Characteristics.” Macromol. Mater. Eng., 299 104–115 (2014)CrossRef
13.
go back to reference Sanchez-Garcia, MD, Lagaron, JM, “On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid.” Cellulose, 17 987–1004 (2010)CrossRef Sanchez-Garcia, MD, Lagaron, JM, “On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid.” Cellulose, 17 987–1004 (2010)CrossRef
14.
go back to reference De Paula, EL, Mano, V, Pereira, FV, “Influence of Cellulose Nanowhiskers on the Hydrolytic Degradation Behavior of Poly(d,l-lactide).” Polym. Degrad. Stab., 96 1631–1638 (2011)CrossRef De Paula, EL, Mano, V, Pereira, FV, “Influence of Cellulose Nanowhiskers on the Hydrolytic Degradation Behavior of Poly(d,l-lactide).” Polym. Degrad. Stab., 96 1631–1638 (2011)CrossRef
15.
go back to reference Pajarito, B, Kubouchi, M, “Flake-Filled Polymers for Corrosion Protection.” J. Chem. Eng. Jpn., 46 18–26 (2013)CrossRef Pajarito, B, Kubouchi, M, “Flake-Filled Polymers for Corrosion Protection.” J. Chem. Eng. Jpn., 46 18–26 (2013)CrossRef
16.
go back to reference Pajarito, B, Kubouchi, M, Sakai, T, Aoki, S, “Effective Diffusion in Flake-Polymer Composites with Accelerated Interphase Transport.” J. Soc. Mater. Sci. Jpn., 61 860–866 (2012)CrossRef Pajarito, B, Kubouchi, M, Sakai, T, Aoki, S, “Effective Diffusion in Flake-Polymer Composites with Accelerated Interphase Transport.” J. Soc. Mater. Sci. Jpn., 61 860–866 (2012)CrossRef
17.
go back to reference Shumigin, D, Tarasova, E, Krumme, A, Meier, P, “Rheological and Mechanical Properties of Poly(Lactic) Acid/Cellulose and LDPE/Cellulose Composites.” Mater. Sci., 17 32–37 (2011) Shumigin, D, Tarasova, E, Krumme, A, Meier, P, “Rheological and Mechanical Properties of Poly(Lactic) Acid/Cellulose and LDPE/Cellulose Composites.” Mater. Sci., 17 32–37 (2011)
18.
go back to reference Ray, SS, Okamoto, M, “Biodegradable Polylactide and its Nanocomposites: Opening a New Dimension for Plastics and Composites.” Macromol. Rapid Commun., 24 815–840 (2003)CrossRef Ray, SS, Okamoto, M, “Biodegradable Polylactide and its Nanocomposites: Opening a New Dimension for Plastics and Composites.” Macromol. Rapid Commun., 24 815–840 (2003)CrossRef
19.
go back to reference Leigh, SJ, Bradley, RJ, Purssell, CP, Billson, DR, Hutchins, DA, “A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors.” PLoS One, 7 e49365 (2012)CrossRef Leigh, SJ, Bradley, RJ, Purssell, CP, Billson, DR, Hutchins, DA, “A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors.” PLoS One, 7 e49365 (2012)CrossRef
20.
go back to reference Brendley, WH, Bakule, RD, “Chemistry and Technology of Acrylic Resins for Coatings.” In: Tess, RW, Poehlein, GW (eds.) Applied Polymer Science, pp. 1031–1052. American Chemical Society, Washington, DC (1985)CrossRef Brendley, WH, Bakule, RD, “Chemistry and Technology of Acrylic Resins for Coatings.” In: Tess, RW, Poehlein, GW (eds.) Applied Polymer Science, pp. 1031–1052. American Chemical Society, Washington, DC (1985)CrossRef
21.
go back to reference Chung, DDL, “A Review of Exfoliated Graphite.” J. Mater. Sci., 51 554–568 (2016)CrossRef Chung, DDL, “A Review of Exfoliated Graphite.” J. Mater. Sci., 51 554–568 (2016)CrossRef
22.
go back to reference Debelak, B, Lafdi, K, “Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties.” Carbon, 45 1727–1734 (2007)CrossRef Debelak, B, Lafdi, K, “Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties.” Carbon, 45 1727–1734 (2007)CrossRef
23.
go back to reference Kwon, H, Kim, D, Seo, J, Han, H, “Enhanced Moisture Barrier Films Based on EVOH/Exfoliated Graphite (EGn) Nanocomposite Films by Solution Blending.” Macromol. Res., 21 987–994 (2013)CrossRef Kwon, H, Kim, D, Seo, J, Han, H, “Enhanced Moisture Barrier Films Based on EVOH/Exfoliated Graphite (EGn) Nanocomposite Films by Solution Blending.” Macromol. Res., 21 987–994 (2013)CrossRef
24.
go back to reference Borriello, C, De Maria, A, Jovic, N, Montone, A, Schwarz, M, Vittori Antisari, M, “Mechanochemical Exfoliation of Graphite and its Polyvinyl Alcohol Nanocomposites with Enhanced Barrier Properties.” Mater. Manuf. Processes, 24 1053–1057 (2009)CrossRef Borriello, C, De Maria, A, Jovic, N, Montone, A, Schwarz, M, Vittori Antisari, M, “Mechanochemical Exfoliation of Graphite and its Polyvinyl Alcohol Nanocomposites with Enhanced Barrier Properties.” Mater. Manuf. Processes, 24 1053–1057 (2009)CrossRef
25.
go back to reference Tsai, MH, Tseng, IH, Huang, YC, Yu, HP, Chang, PY, “Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite.” Adv. Eng. Mater., 18 582–590 (2016)CrossRef Tsai, MH, Tseng, IH, Huang, YC, Yu, HP, Chang, PY, “Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite.” Adv. Eng. Mater., 18 582–590 (2016)CrossRef
26.
go back to reference Hernandez, Y, Nicolosi, V, Lotya, M, Blighe, FM, Sun, Z, De, S, McGovern, IT, Holland, B, Byrne, M, Gun’Ko, YK, Boland, JJ, Niraj, P, Duesberg, G, Krishnamurthy, S, Goodhue, R, Hutchison, J, Scardaci, V, Ferrari, AC, Coleman, JN, “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite.” Nat. Nanotechnol., 3 563–568 (2008)CrossRef Hernandez, Y, Nicolosi, V, Lotya, M, Blighe, FM, Sun, Z, De, S, McGovern, IT, Holland, B, Byrne, M, Gun’Ko, YK, Boland, JJ, Niraj, P, Duesberg, G, Krishnamurthy, S, Goodhue, R, Hutchison, J, Scardaci, V, Ferrari, AC, Coleman, JN, “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite.” Nat. Nanotechnol., 3 563–568 (2008)CrossRef
27.
go back to reference Chartarrayawadee, W, Molloy, R, Ratchawet, A, Janmee, N, Butsamran, M, Panpai, K, “Fabrication of Poly(Lactic Acid)/Graphene Oxide/Stearic Acid Composites with Improved Tensile Strength.” Polym. Composite, 38 2272–2282 (2015)CrossRef Chartarrayawadee, W, Molloy, R, Ratchawet, A, Janmee, N, Butsamran, M, Panpai, K, “Fabrication of Poly(Lactic Acid)/Graphene Oxide/Stearic Acid Composites with Improved Tensile Strength.” Polym. Composite, 38 2272–2282 (2015)CrossRef
28.
go back to reference Planes, E, Duchet, J, Maazouz, A, Gerard, J, “Characterization of New Formulations for the Rotational Molding Based on Ethylene-Propylene Copolymer/Graphite Nanocomposites.” Polym. Eng. Sci., 48 723–731 (2008)CrossRef Planes, E, Duchet, J, Maazouz, A, Gerard, J, “Characterization of New Formulations for the Rotational Molding Based on Ethylene-Propylene Copolymer/Graphite Nanocomposites.” Polym. Eng. Sci., 48 723–731 (2008)CrossRef
29.
go back to reference Williams, DL, Kuhn, AT, Amann, MA, Hausinger, MB, Konarik, MM, Nesselrode, EI, “Computerised Measurement of Contact Angles.” Galvanotechnik, 101 2502–2512 (2010) Williams, DL, Kuhn, AT, Amann, MA, Hausinger, MB, Konarik, MM, Nesselrode, EI, “Computerised Measurement of Contact Angles.” Galvanotechnik, 101 2502–2512 (2010)
30.
go back to reference Narayan, R, Kim, SO, “Surfactant Mediated Liquid Phase Exfoliation of Graphene.” Nano Convergence, 2 20 (2015)CrossRef Narayan, R, Kim, SO, “Surfactant Mediated Liquid Phase Exfoliation of Graphene.” Nano Convergence, 2 20 (2015)CrossRef
31.
go back to reference Hamilton, CE, Lomeda, JR, Sun, Z, Tour, JM, Barron, AR, “High-Yield Organic Dispersions of Unfunctionalized Graphene.” Nano Lett., 9 3460–3462 (2009)CrossRef Hamilton, CE, Lomeda, JR, Sun, Z, Tour, JM, Barron, AR, “High-Yield Organic Dispersions of Unfunctionalized Graphene.” Nano Lett., 9 3460–3462 (2009)CrossRef
32.
go back to reference Yi, M, Shen, Z, “Kitchen Blender for Producing High-Quality Few-Layer Graphene.” Carbon, 78 622–626 (2014)CrossRef Yi, M, Shen, Z, “Kitchen Blender for Producing High-Quality Few-Layer Graphene.” Carbon, 78 622–626 (2014)CrossRef
33.
go back to reference Qian, Y, Vu, A, Smyrl, W, Stein, A, “Facile Preparation and Electrochemical Properties of V2O5–Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries.” J. Electrochem. Soc., 159 A1135–A1140 (2012)CrossRef Qian, Y, Vu, A, Smyrl, W, Stein, A, “Facile Preparation and Electrochemical Properties of V2O5–Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries.” J. Electrochem. Soc., 159 A1135–A1140 (2012)CrossRef
34.
go back to reference Valapa, RV, Pugazhenthi, G, Katiyar, V, “Effect of Graphene Content on the Properties of Poly (Lactic Acid) Nanocomposites.” RSC Adv., 5 28410–28423 (2015)CrossRef Valapa, RV, Pugazhenthi, G, Katiyar, V, “Effect of Graphene Content on the Properties of Poly (Lactic Acid) Nanocomposites.” RSC Adv., 5 28410–28423 (2015)CrossRef
35.
go back to reference Wu, Y, Wang, B, Ma, Y, Huang, Y, Li, N, Zhang, F, Chen, Y, “Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films.” Nano Res., 3 661–669 (2010)CrossRef Wu, Y, Wang, B, Ma, Y, Huang, Y, Li, N, Zhang, F, Chen, Y, “Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films.” Nano Res., 3 661–669 (2010)CrossRef
36.
go back to reference Li, ZQ, Lu, CJ, Xia, ZP, Zhou, Y, Luo, Z, “X-Ray Diffraction Patterns of Graphite and Turbostratic Carbon.” Carbon, 45 1686–1695 (2007)CrossRef Li, ZQ, Lu, CJ, Xia, ZP, Zhou, Y, Luo, Z, “X-Ray Diffraction Patterns of Graphite and Turbostratic Carbon.” Carbon, 45 1686–1695 (2007)CrossRef
37.
go back to reference Sato, S, Gondo, D, Wada, T, Kanehashi, S, Nagai, K, “Effects of Various Liquid Organic Solvents on Solvent-Induced Crystallization of Amorphous Poly (Lactic Acid) Film.” J. Appl. Polym. Sci., 129 1607–1617 (2013)CrossRef Sato, S, Gondo, D, Wada, T, Kanehashi, S, Nagai, K, “Effects of Various Liquid Organic Solvents on Solvent-Induced Crystallization of Amorphous Poly (Lactic Acid) Film.” J. Appl. Polym. Sci., 129 1607–1617 (2013)CrossRef
38.
go back to reference Awaja, F, Gilbert, M, Kelly, G, Fox, B, Pigram, PJ, “Adhesion of Polymers.” Prog. Polym. Sci., 34 948–968 (2009)CrossRef Awaja, F, Gilbert, M, Kelly, G, Fox, B, Pigram, PJ, “Adhesion of Polymers.” Prog. Polym. Sci., 34 948–968 (2009)CrossRef
39.
go back to reference Zhao, Y, Qiu, J, Feng, H, Zhang, M, Lei, L, Wu, X, “Improvement of Tensile and Thermal Properties of Poly (Lactic Acid) Composites with Admicellar-Treated Rice Straw Fiber.” Chem. Eng. J., 173 659–666 (2011)CrossRef Zhao, Y, Qiu, J, Feng, H, Zhang, M, Lei, L, Wu, X, “Improvement of Tensile and Thermal Properties of Poly (Lactic Acid) Composites with Admicellar-Treated Rice Straw Fiber.” Chem. Eng. J., 173 659–666 (2011)CrossRef
40.
go back to reference Yang, C, Smyrl, WH, Cussler, EL, “Flake Alignment in Composite Coatings.” J. Membr. Sci., 231 1–12 (2004)CrossRef Yang, C, Smyrl, WH, Cussler, EL, “Flake Alignment in Composite Coatings.” J. Membr. Sci., 231 1–12 (2004)CrossRef
41.
go back to reference Aramendia, E, Mallégol, J, Jeynes, C, Barandiaran, M, Keddie, J, Asua, J, “Distribution of Surfactants Near Acrylic Latex Film Surfaces: A Comparison of Conventional and Reactive Surfactants (Surfmers).” Langmuir., 19 3212–3221 (2003)CrossRef Aramendia, E, Mallégol, J, Jeynes, C, Barandiaran, M, Keddie, J, Asua, J, “Distribution of Surfactants Near Acrylic Latex Film Surfaces: A Comparison of Conventional and Reactive Surfactants (Surfmers).” Langmuir., 19 3212–3221 (2003)CrossRef
42.
go back to reference Liu, P, Sun, S, Hou, H, Dong, H, “Effects of Fatty Acids with Different Degree of Unsaturation on Properties of Sweet Potato Starch-Based Films.” Food Hydrocolloids, 61 351–357 (2016)CrossRef Liu, P, Sun, S, Hou, H, Dong, H, “Effects of Fatty Acids with Different Degree of Unsaturation on Properties of Sweet Potato Starch-Based Films.” Food Hydrocolloids, 61 351–357 (2016)CrossRef
43.
go back to reference Wu, X, Chen, Y, Lv, XC, Du, ZL, Zhu, PX, “Effect of Stearic Acid and Sodium Stearate on Cast Cornstarch Films.” J. Appl. Polym. Sci., 124 3782–3791 (2012)CrossRef Wu, X, Chen, Y, Lv, XC, Du, ZL, Zhu, PX, “Effect of Stearic Acid and Sodium Stearate on Cast Cornstarch Films.” J. Appl. Polym. Sci., 124 3782–3791 (2012)CrossRef
44.
go back to reference Schmidt, VCR, Porto, LM, Laurindo, JB, Menegalli, FC, “Water Vapor Barrier and Mechanical Properties of Starch Films Containing Stearic Acid.” Ind. Crops Prod., 41 227–234 (2013)CrossRef Schmidt, VCR, Porto, LM, Laurindo, JB, Menegalli, FC, “Water Vapor Barrier and Mechanical Properties of Starch Films Containing Stearic Acid.” Ind. Crops Prod., 41 227–234 (2013)CrossRef
Metadata
Title
Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces
Authors
Bryan B. Pajarito
Carlo Angelo L. Cayabyab
Patrick Aldrei C. Costales
Jasmine R. Francisco
Publication date
28-02-2019
Publisher
Springer US
Published in
Journal of Coatings Technology and Research / Issue 4/2019
Print ISSN: 1547-0091
Electronic ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-019-00188-4

Other articles of this Issue 4/2019

Journal of Coatings Technology and Research 4/2019 Go to the issue

Premium Partners