Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2019

19-04-2019

Experimental and 3D Micromechanical Analysis of Stress–Strain Behavior and Damage Initiation in Dual-Phase Steels

Authors: B. Anbarlooie, H. Hosseini-Toudeshky, M. Hosseini, J. Kadkhodapour

Published in: Journal of Materials Engineering and Performance | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the recent decade, dual-phase steel has been used extensively in the industry due to its high strength and formability. In this paper, deformation pattern and mechanical behavior of DP steel are predicted using the 2D and 3D representative volume element (RVE) and finite elements method. Also, the obtained results were compared with the experimental SEM images. The experiments are performed in three stages to obtain the stress–strain curve and failure pattern in the specimens with the different state of stress distribution at the test sections. In the 3D state of stress, the state of applied stress to the RVE is obtained from macro-modeling of the test specimens and this model was analyzed using the finite element method. Furthermore, the effects of volume fraction and mesh size in 3D simulation on the stress–strain behavior are investigated. Metallography and SEM images are also used to access the failure mechanism at the microscale. It is shown that the martensite particles remain almost in their original form and their deformations are very small for the specimens with the thickness-to-width ratio of 0.8 (3D state of stress). This phenomenon is completely different from those obtained for smaller thickness-to-width ratio that the martensite particles were pulled and its length was increased. On the other hand, SEM images show that voids are located in the phase boundaries. According to the experimental and numerical results, although the main factor in the formation and growth of 2D voids is shear stress, in the 3D state of stress, the voids grow in spherical form due to the existence of large hydrostatic stresses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.S. Rashid, Dual Phase Steels, Annu. Rev. Mater. Sci., 1981, 11(1), p 245–266CrossRef M.S. Rashid, Dual Phase Steels, Annu. Rev. Mater. Sci., 1981, 11(1), p 245–266CrossRef
2.
go back to reference N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, and W. Bleck, A Micromechanical Damage Simulation of Dual Phase Steels Using XFEM, Comput. Mater. Sci., 2012, 54, p 271–279CrossRef N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, and W. Bleck, A Micromechanical Damage Simulation of Dual Phase Steels Using XFEM, Comput. Mater. Sci., 2012, 54, p 271–279CrossRef
3.
go back to reference S. Sodjit and V. Uthaisangsuk, Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels, Mater. Des., 2012, 41, p 370–379CrossRef S. Sodjit and V. Uthaisangsuk, Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels, Mater. Des., 2012, 41, p 370–379CrossRef
4.
go back to reference A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, Characterization and Modelling of Failure Initiation in DP Steel, Comput. Mater. Sci., 2013, 75, p 35–44CrossRef A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, Characterization and Modelling of Failure Initiation in DP Steel, Comput. Mater. Sci., 2013, 75, p 35–44CrossRef
5.
go back to reference X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel, Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization, Int. J. Plast., 2009, 25(10), p 1888–1909CrossRef X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel, Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization, Int. J. Plast., 2009, 25(10), p 1888–1909CrossRef
6.
go back to reference H. Hosseini-Toudeshky, B. Anbarlooie, and J. Kadkhodapour, Micromechanics Stress–Strain Behavior Prediction of Dual Phase Steel Considering Plasticity and Grain Boundaries Debonding, Mater. Des., 2015, 68, p 167–176CrossRef H. Hosseini-Toudeshky, B. Anbarlooie, and J. Kadkhodapour, Micromechanics Stress–Strain Behavior Prediction of Dual Phase Steel Considering Plasticity and Grain Boundaries Debonding, Mater. Des., 2015, 68, p 167–176CrossRef
7.
go back to reference H. Hosseini-Toudeshky, B. Anbarlooie, J. Kadkhodapour, and G. Shadalooyi, Microstructural Deformation Pattern and Mechanical Behavior Analyses of DP600 Dual Phase Steel, Mater. Sci. Eng., A, 2014, 600, p 108–121CrossRef H. Hosseini-Toudeshky, B. Anbarlooie, J. Kadkhodapour, and G. Shadalooyi, Microstructural Deformation Pattern and Mechanical Behavior Analyses of DP600 Dual Phase Steel, Mater. Sci. Eng., A, 2014, 600, p 108–121CrossRef
8.
go back to reference B. Anbarlooie, H. Hosseini-Toudeshky, and J. Kadkhodapour, High Cycle Fatigue Micromechanical Behavior of Dual Phase Steel: Damage Initiation, Propagation and Final Failure, Mech. Mater., 2017, 106, p 8–19CrossRef B. Anbarlooie, H. Hosseini-Toudeshky, and J. Kadkhodapour, High Cycle Fatigue Micromechanical Behavior of Dual Phase Steel: Damage Initiation, Propagation and Final Failure, Mech. Mater., 2017, 106, p 8–19CrossRef
9.
go back to reference T. Matsuno, C. Teodosiu, D. Maeda, and A. Uenish, Mesoscale Simulation of the Early Evolution of Ductile Fracture in Dual-Phase Steels, Int. J. Plast., 2015, 74, p 17–34CrossRef T. Matsuno, C. Teodosiu, D. Maeda, and A. Uenish, Mesoscale Simulation of the Early Evolution of Ductile Fracture in Dual-Phase Steels, Int. J. Plast., 2015, 74, p 17–34CrossRef
10.
go back to reference R.K.A. Al-Rub, M. Ettehad, and A.N. Palazotto, Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity–Damage Model, Int. J. Solids Struct., 2015, 58, p 178–189CrossRef R.K.A. Al-Rub, M. Ettehad, and A.N. Palazotto, Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity–Damage Model, Int. J. Solids Struct., 2015, 58, p 178–189CrossRef
11.
go back to reference E. Ahmed, M. Tanvir, L.A. Kanwar, and J.I. Akhtar, Effect of Micro Void Formation on the Tensile Properties of Dual-Phase Steel, J. Mater. Eng. Perform., 2000, 9(3), p 306–310CrossRef E. Ahmed, M. Tanvir, L.A. Kanwar, and J.I. Akhtar, Effect of Micro Void Formation on the Tensile Properties of Dual-Phase Steel, J. Mater. Eng. Perform., 2000, 9(3), p 306–310CrossRef
12.
go back to reference F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of the Effect of Particle Size Difference in Dual Phase Steels, Int. J. Solids Struct., 2003, 40(13), p 3379–3391CrossRef F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of the Effect of Particle Size Difference in Dual Phase Steels, Int. J. Solids Struct., 2003, 40(13), p 3379–3391CrossRef
13.
go back to reference K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel, Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels, Metall. Mater. Trans. A, 2009, 40(4), p 796–809CrossRef K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel, Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels, Metall. Mater. Trans. A, 2009, 40(4), p 796–809CrossRef
14.
go back to reference J. Kadkhodapour, B. Anbarlooie, H. Hosseini-Toudeshky, and S. Schmauder, Simulation of Shear Failure in Dual Phase Steels Using Localization Criteria and Experimental Observation, Comput. Mater. Sci., 2014, 94, p 106–113CrossRef J. Kadkhodapour, B. Anbarlooie, H. Hosseini-Toudeshky, and S. Schmauder, Simulation of Shear Failure in Dual Phase Steels Using Localization Criteria and Experimental Observation, Comput. Mater. Sci., 2014, 94, p 106–113CrossRef
15.
go back to reference E.-Y. Kim, H.S. Yang, S.H. Han, J.H. Kwak, and S.-H. Choi, Effect of Initial Microstructure on Strain–Stress Partitioning and Void Formation in DP980 Steel During Uniaxial Tension, Met. Mater. Int., 2012, 18(4), p 573–582CrossRef E.-Y. Kim, H.S. Yang, S.H. Han, J.H. Kwak, and S.-H. Choi, Effect of Initial Microstructure on Strain–Stress Partitioning and Void Formation in DP980 Steel During Uniaxial Tension, Met. Mater. Int., 2012, 18(4), p 573–582CrossRef
16.
go back to reference J. Kadkhodapour, A. Butz, S. Ziaei-Rad, and S. Schmauder, A Micro Mechanical Study on Failure Initiation of Dual Phase Steels Under Tension Using Single Crystal Plasticity Model, Int. J. Plast., 2011, 27(7), p 1103–1125CrossRef J. Kadkhodapour, A. Butz, S. Ziaei-Rad, and S. Schmauder, A Micro Mechanical Study on Failure Initiation of Dual Phase Steels Under Tension Using Single Crystal Plasticity Model, Int. J. Plast., 2011, 27(7), p 1103–1125CrossRef
17.
go back to reference S.K. Paul and A. Kumar, Micromechanics Based Modeling to Predict Flow Behavior and Plastic Strain Localization of Dual Phase Steels, Comput. Mater. Sci., 2012, 63, p 66–74CrossRef S.K. Paul and A. Kumar, Micromechanics Based Modeling to Predict Flow Behavior and Plastic Strain Localization of Dual Phase Steels, Comput. Mater. Sci., 2012, 63, p 66–74CrossRef
18.
go back to reference M. Ohata, M. Suzuki, A. Ui, and F. Minami, 3D-Simulation of Ductile Failure in Two-Phase Structural Steel with Heterogeneous Microstructure, Eng. Fract. Mech., 2010, 77(2), p 277–284CrossRef M. Ohata, M. Suzuki, A. Ui, and F. Minami, 3D-Simulation of Ductile Failure in Two-Phase Structural Steel with Heterogeneous Microstructure, Eng. Fract. Mech., 2010, 77(2), p 277–284CrossRef
19.
go back to reference V. Uthaisangsuk, U. Prahl, and W. Bleck, Modelling of Damage and Failure in Multiphase High Strength DP and TRIP Steels, Eng. Fract. Mech., 2011, 78(3), p 469–486CrossRef V. Uthaisangsuk, U. Prahl, and W. Bleck, Modelling of Damage and Failure in Multiphase High Strength DP and TRIP Steels, Eng. Fract. Mech., 2011, 78(3), p 469–486CrossRef
20.
go back to reference A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Correlation Between 2D and 3D Flow Curve Modelling of DP Steels Using a Microstructure-based RVE Approach, Mater. Sci. Eng., A, 2013, 560, p 129–139CrossRef A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Correlation Between 2D and 3D Flow Curve Modelling of DP Steels Using a Microstructure-based RVE Approach, Mater. Sci. Eng., A, 2013, 560, p 129–139CrossRef
21.
go back to reference S.K. Paul, Real Microstructure Based Micromechanical Model to Simulate Microstructural Level Deformation Behavior and Failure Initiation in DP 590 Steel, Mater. Des., 2013, 44, p 397–406CrossRef S.K. Paul, Real Microstructure Based Micromechanical Model to Simulate Microstructural Level Deformation Behavior and Failure Initiation in DP 590 Steel, Mater. Des., 2013, 44, p 397–406CrossRef
22.
go back to reference J.H. Kim, D. Kim, F. Barlat, and M.-G. Lee, Crystal Plasticity Approach for Predicting the Bauschinger Effect in Dual-Phase Steels, Mater. Sci. Eng., A, 2012, 539, p 259–270CrossRef J.H. Kim, D. Kim, F. Barlat, and M.-G. Lee, Crystal Plasticity Approach for Predicting the Bauschinger Effect in Dual-Phase Steels, Mater. Sci. Eng., A, 2012, 539, p 259–270CrossRef
23.
go back to reference J.R. Mayeur and D.L. McDowell, A Three-Dimensional Crystal Plasticity Model for Duplex Ti–6Al–4V, Int. J. Plast., 2007, 23(9), p 1457–1485CrossRef J.R. Mayeur and D.L. McDowell, A Three-Dimensional Crystal Plasticity Model for Duplex Ti–6Al–4V, Int. J. Plast., 2007, 23(9), p 1457–1485CrossRef
24.
go back to reference S.O. Poulsen, P.W. Voorhees, and E.M. Lauridsen, Three-Dimensional Simulations of Microstructural Evolution in Polycrystalline Dual-Phase Materials with Constant Volume Fractions, Acta Mater., 2013, 61, p 1220–1228CrossRef S.O. Poulsen, P.W. Voorhees, and E.M. Lauridsen, Three-Dimensional Simulations of Microstructural Evolution in Polycrystalline Dual-Phase Materials with Constant Volume Fractions, Acta Mater., 2013, 61, p 1220–1228CrossRef
25.
go back to reference B. Anbarlooie, J. Kadkhodapour, Toudeshky H. Hosseini, S. Schmauder, Micromechanics of Dual-Phase Steels: Deformation, Damage, Fatigue, Handbook of Mechanics of Materials, C.H. Hsueh et al., Ed., Springer, Singapore, 2018, B. Anbarlooie, J. Kadkhodapour, Toudeshky H. Hosseini, S. Schmauder, Micromechanics of Dual-Phase Steels: Deformation, Damage, Fatigue, Handbook of Mechanics of Materials, C.H. Hsueh et al., Ed., Springer, Singapore, 2018,
26.
go back to reference P. Kohnke, Ed., ANSYS Mechanical APDL Theory Reference, 2013 P. Kohnke, Ed., ANSYS Mechanical APDL Theory Reference, 2013
27.
go back to reference M. Amirmaleki, J. Samei, D.E. Green, L. van Riemsdijk, and L. Stewart, 3D Micromechanical Modeling of Dual Phase Steels Using the Representative Volume Element Method, Mech. Mater., 2016, 101, p 27–39CrossRef M. Amirmaleki, J. Samei, D.E. Green, L. van Riemsdijk, and L. Stewart, 3D Micromechanical Modeling of Dual Phase Steels Using the Representative Volume Element Method, Mech. Mater., 2016, 101, p 27–39CrossRef
Metadata
Title
Experimental and 3D Micromechanical Analysis of Stress–Strain Behavior and Damage Initiation in Dual-Phase Steels
Authors
B. Anbarlooie
H. Hosseini-Toudeshky
M. Hosseini
J. Kadkhodapour
Publication date
19-04-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04029-8

Other articles of this Issue 5/2019

Journal of Materials Engineering and Performance 5/2019 Go to the issue

Premium Partners