Skip to main content
Top
Published in: Microsystem Technologies 7/2017

18-06-2016 | Technical Paper

Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes

Authors: Hamed Gholami Derami, Ravindra Vundavilli, Jeff Darabi

Published in: Microsystem Technologies | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a simple and efficient method for removing gas bubbles from a microfluidic system. This bubble removal system uses a T-junction configuration to generate gas bubbles within a water-filled microchannel. The generated bubbles are then transported to a bubble removal region and vented through a hydrophobic nanofibrous membrane. Four different hydrophobic Polytetrafluorethylene membranes with different pore sizes ranging from 0.45 to 3 μm are tested to study the effect of membrane structure on the system performance. The fluidic channel width is 500 μm and channel height ranges from 100 to 300 μm. Additionally, a 3D computational fluid dynamics model is developed to simulate the bubble generation and its removal from a microfluidic system. Computational results are found to be in a good agreement with the experimental data. The effects of various geometrical and flow parameters on bubble removal capability of the system are studied. Furthermore, gas–liquid two-phase flow behaviors for both the complete and partial bubble removal cases are thoroughly investigated. The results indicate that the gas bubble removal rate increases with increasing the pore size and channel height but decreases with increasing the liquid flow rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103CrossRef Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103CrossRef
go back to reference Damgaard LR, Larsen LH, Revsbech NP (1995) Microscale biosensors for environmental monitoring. J Trends Anal Chem 14(7):300–303CrossRef Damgaard LR, Larsen LH, Revsbech NP (1995) Microscale biosensors for environmental monitoring. J Trends Anal Chem 14(7):300–303CrossRef
go back to reference Davies CN (1952) The separation of the airborne dust and particles. In: Proceedings of Institute of Mechanical Engineers B1, London, pp 185–213 Davies CN (1952) The separation of the airborne dust and particles. In: Proceedings of Institute of Mechanical Engineers B1, London, pp 185–213
go back to reference Derami HG, Darabi J (2015) Computational and experimental study of gas bubbles removal in a microfluidic system. In: ASME 2015 12th International Conference on Nanochannels, Microchannels, and Minichannels, July 6–9, 2015, San Francisco, California, USA Derami HG, Darabi J (2015) Computational and experimental study of gas bubbles removal in a microfluidic system. In: ASME 2015 12th International Conference on Nanochannels, Microchannels, and Minichannels, July 6–9, 2015, San Francisco, California, USA
go back to reference Drummond JE, Tahir MI (1984) Laminar viscous flow through regular arrays of parallel solid cylinders. Int J Multiph Flow 10(3):515–540CrossRefMATH Drummond JE, Tahir MI (1984) Laminar viscous flow through regular arrays of parallel solid cylinders. Int J Multiph Flow 10(3):515–540CrossRefMATH
go back to reference Fei K, Chen TS, Hong CW (2010) Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods. J Power Sources 195(7):1940–1945CrossRef Fei K, Chen TS, Hong CW (2010) Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods. J Power Sources 195(7):1940–1945CrossRef
go back to reference Fu TT, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64:2392–2400CrossRef Fu TT, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64:2392–2400CrossRef
go back to reference Fu TT, Hui X, Zhu C-Y, Ma Y-G, Li H-Z (2011) Formation of dispersed small bubbles in flow-focusing microchannels. J Chem Eng Chin Univ 25:337–340 Fu TT, Hui X, Zhu C-Y, Ma Y-G, Li H-Z (2011) Formation of dispersed small bubbles in flow-focusing microchannels. J Chem Eng Chin Univ 25:337–340
go back to reference Fukagata K, Kasagi N, Ua-arayaporn P, Himeno T (2007) Numerical simulation of gas–liquid two-phase flow and convective heat transfer in a micro tube. Int J Heat Fluid Flow 28(1):72–82CrossRef Fukagata K, Kasagi N, Ua-arayaporn P, Himeno T (2007) Numerical simulation of gas–liquid two-phase flow and convective heat transfer in a micro tube. Int J Heat Fluid Flow 28(1):72–82CrossRef
go back to reference Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2652CrossRef Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2652CrossRef
go back to reference Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-Scaling and mechanism of break-up. Lab Chip 6:437–446CrossRef Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-Scaling and mechanism of break-up. Lab Chip 6:437–446CrossRef
go back to reference Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126CrossRef Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126CrossRef
go back to reference Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. Proc Natl Acad Sci 88:7708–7710CrossRef Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. Proc Natl Acad Sci 88:7708–7710CrossRef
go back to reference Heiszwolf JJ, Kreutzer MT, van den Eijnden MG, Kapteijn F, Moulijn JA (2001) Gas–liquid mass transfer of aqueous Taylor flow in monoliths. Catal Today 69(1–4):51–55CrossRef Heiszwolf JJ, Kreutzer MT, van den Eijnden MG, Kapteijn F, Moulijn JA (2001) Gas–liquid mass transfer of aqueous Taylor flow in monoliths. Catal Today 69(1–4):51–55CrossRef
go back to reference Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATH Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATH
go back to reference Jaganathana S, Vahedi Tafreshib H, Pourdeyhimia B (2008) A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem Eng Sci 63(1):244–252CrossRef Jaganathana S, Vahedi Tafreshib H, Pourdeyhimia B (2008) A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem Eng Sci 63(1):244–252CrossRef
go back to reference Johnson M, Liddiard G, Eddings M, Gale B (2009) Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices. J Micromech Microeng 19:095011CrossRef Johnson M, Liddiard G, Eddings M, Gale B (2009) Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices. J Micromech Microeng 19:095011CrossRef
go back to reference Kang S, Zhou B (2014) Numerical study of bubble generation and transport in a serpentine channel with a T-junction. Int J Hydrogen Energy 39(5):2325–2333CrossRef Kang S, Zhou B (2014) Numerical study of bubble generation and transport in a serpentine channel with a T-junction. Int J Hydrogen Energy 39(5):2325–2333CrossRef
go back to reference Karlsson JM, Haraldsson T, Laakso S, Virtanen A, Maki M, Ronan G, van der Wijngaart W (2011) PCR on a PDMS-based microchip with integrated bubble removal. IEEE 2011:2215–2218 Karlsson JM, Haraldsson T, Laakso S, Virtanen A, Maki M, Ronan G, van der Wijngaart W (2011) PCR on a PDMS-based microchip with integrated bubble removal. IEEE 2011:2215–2218
go back to reference Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J 51(9):2428–2440CrossRef Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J 51(9):2428–2440CrossRef
go back to reference Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:545031–545034 Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:545031–545034
go back to reference Lochovsky C, Yasotharan S, Günther A (2012) Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices, Lab on a Chip, 12. Issue 3:595–601 Lochovsky C, Yasotharan S, Günther A (2012) Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices, Lab on a Chip, 12. Issue 3:595–601
go back to reference Mehling M, Tay S (2014) Microfluidic cell culture. J Curr Opin Biotechnol 25:95–102CrossRef Mehling M, Tay S (2014) Microfluidic cell culture. J Curr Opin Biotechnol 25:95–102CrossRef
go back to reference Meng DD, Kim J, Kim C-J (2006) A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices. J Micromech Microeng 16:419–424CrossRef Meng DD, Kim J, Kim C-J (2006) A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices. J Micromech Microeng 16:419–424CrossRef
go back to reference Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79(1):12–49MathSciNetCrossRefMATH Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79(1):12–49MathSciNetCrossRefMATH
go back to reference Qian D, Lawal A (2006) Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci 61(23):7609–7625CrossRef Qian D, Lawal A (2006) Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci 61(23):7609–7625CrossRef
go back to reference Quan P, Zhou B, Sobiesiak A, Liu Z (2005) Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode. J Power Sources 152:131–145CrossRef Quan P, Zhou B, Sobiesiak A, Liu Z (2005) Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode. J Power Sources 152:131–145CrossRef
go back to reference Shin YS, Cho K, Lim SH, Chung S, Park S-J, Chung C, Han D-C, Chang JK (2003) PDMS-based micro PCR chip with Parylene coating. J Micromech Microeng 13:768–774CrossRef Shin YS, Cho K, Lim SH, Chung S, Park S-J, Chung C, Han D-C, Chang JK (2003) PDMS-based micro PCR chip with Parylene coating. J Micromech Microeng 13:768–774CrossRef
go back to reference Skelley A, Voldman MJ (2008) An active bubble trap and debubbler for microfluidic systems. Lab Chip 8:1733–1737CrossRef Skelley A, Voldman MJ (2008) An active bubble trap and debubbler for microfluidic systems. Lab Chip 8:1733–1737CrossRef
go back to reference Sung JH, Shuler ML (2009) Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdev 11(4):731–738CrossRef Sung JH, Shuler ML (2009) Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdev 11(4):731–738CrossRef
go back to reference Taha T, Cui ZF (2004) Hydrodynamics of slug flow inside capillaries. Chem Eng Sci 59(6):1181–1190CrossRef Taha T, Cui ZF (2004) Hydrodynamics of slug flow inside capillaries. Chem Eng Sci 59(6):1181–1190CrossRef
go back to reference Taha T, Cui ZF (2006) CFD modelling of slug flow inside square capillaries. Chem Eng Sci 61(2):665–675CrossRef Taha T, Cui ZF (2006) CFD modelling of slug flow inside square capillaries. Chem Eng Sci 61(2):665–675CrossRef
go back to reference Tan J, Li SW, Wang K, Luo GS (2006) Gas–liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route. Chem Eng J 146:428–433CrossRef Tan J, Li SW, Wang K, Luo GS (2006) Gas–liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route. Chem Eng J 146:428–433CrossRef
go back to reference Tomadakis MM, Robertson JT (2005) Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J Compos Mater 39(2):163–188CrossRef Tomadakis MM, Robertson JT (2005) Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J Compos Mater 39(2):163–188CrossRef
go back to reference Tsai JH, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. J Sens Actuators 97–98:665–671CrossRef Tsai JH, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. J Sens Actuators 97–98:665–671CrossRef
go back to reference Vundavilli R, Darabi J (2014) Bubble removal in microfluidic devices using nanofibrous membranes, FEDSM2014-21616. In: Proceedings of the ASME 2014 4th Joint US-European fluids engineering division summer meeting and 12th international conference on Nanochannels, Microchannels, and Minichannels FEDSM2014 August 3–7, 2014, Chicago, Illinois, USA Vundavilli R, Darabi J (2014) Bubble removal in microfluidic devices using nanofibrous membranes, FEDSM2014-21616. In: Proceedings of the ASME 2014 4th Joint US-European fluids engineering division summer meeting and 12th international conference on Nanochannels, Microchannels, and Minichannels FEDSM2014 August 3–7, 2014, Chicago, Illinois, USA
go back to reference Xiong R, Bai M, Chung JN (2007) Formation of bubbles in a simple co-flowing micro-channel. J Micromech Microeng 17:1002–1011CrossRef Xiong R, Bai M, Chung JN (2007) Formation of bubbles in a simple co-flowing micro-channel. J Micromech Microeng 17:1002–1011CrossRef
go back to reference Xu JH, Li SW, Chen GG, Luo GS (2006) Formation of monodisperse microbubbles in a microfluidic device. AIChE J 52:2254–2259CrossRef Xu JH, Li SW, Chen GG, Luo GS (2006) Formation of monodisperse microbubbles in a microfluidic device. AIChE J 52:2254–2259CrossRef
go back to reference Xu J, Vaillant R, Attinger D (2010) Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluid 9(4–5):765–772CrossRef Xu J, Vaillant R, Attinger D (2010) Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluid 9(4–5):765–772CrossRef
go back to reference Yuan Z, Zhang Y, Li Z, Zhao Y, Liu X (2014) Investigation of mass transport and cell performance on µDMFC with different anode flow fields. Int J Energy 38:139–150CrossRef Yuan Z, Zhang Y, Li Z, Zhao Y, Liu X (2014) Investigation of mass transport and cell performance on µDMFC with different anode flow fields. Int J Energy 38:139–150CrossRef
go back to reference Zhu X (2009) Micro/nanoporous membrane based gas–water separation in microchannel. Microsyst Technol 15(9):1459–1465CrossRef Zhu X (2009) Micro/nanoporous membrane based gas–water separation in microchannel. Microsyst Technol 15(9):1459–1465CrossRef
Metadata
Title
Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes
Authors
Hamed Gholami Derami
Ravindra Vundavilli
Jeff Darabi
Publication date
18-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3020-2

Other articles of this Issue 7/2017

Microsystem Technologies 7/2017 Go to the issue