Skip to main content
Top
Published in: Journal of Engineering Thermophysics 3/2023

01-09-2023

Experimental and Numerical Investigation of Al2O3 Nanofluids Based Crude Oil in Shell and Tube Heat Exchanger

Authors: A. M. M. Al-Obaidi, M. Pirmohammadi

Published in: Journal of Engineering Thermophysics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerical investigation of heat transfer augmentation with Al2O3 nanofluids-based crude oil in a shell and tube heat exchanger. This paper presents numerical and experimental investigations to study the effect of using Al2O3 nanofluids based crude oil on heat transfer enhancement in a turbulent regime with mass flow rate of (4 to 18 kg/s) in the shell and tube heat exchanger. The investigation concentrates on the effects of the Al2O3 based crude oil nanofluids on friction factor, flow characteristics and heat transfer, through shell and tube heat exchanger. The results show that the thermal conductivity as well as the viscosity of Al2O3 nanofluid based crude oil increased with increasing nanoparticles volume fraction and decreased with increasing the temperature. The outcomes revealed that the Nusselt number improved with increasing mass flow rate and also the friction factor increases dramatically using nanofluid this because of increment in nanofluid viscosity comparing to the base fluid (crude oil), additionally the results illustrate a constant pattern along the heat exchanger.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Towler, G. and Sinnott, R., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2021. Towler, G. and Sinnott, R., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2021.
2.
go back to reference Chang, C., et al., Globally Optimal Design of Intensified Shell and Tube Heat Exchangers Using Complete Set Trimming, Comput. Chem. Engin., 2022, vol. 158, p. 107644.CrossRef Chang, C., et al., Globally Optimal Design of Intensified Shell and Tube Heat Exchangers Using Complete Set Trimming, Comput. Chem. Engin., 2022, vol. 158, p. 107644.CrossRef
3.
go back to reference Kim, K., et al., Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions, Energies, 2021, vol. 14, no. 20, p. 6688.CrossRef Kim, K., et al., Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions, Energies, 2021, vol. 14, no. 20, p. 6688.CrossRef
4.
go back to reference Wang, B., et al., Heat Exchanger Network Retrofit with Heat Exchanger and Material Type Selection: A Review and a Novel Method, Ren. Sust. Energy Rev., 2021, vol. 138, p. 110479.CrossRef Wang, B., et al., Heat Exchanger Network Retrofit with Heat Exchanger and Material Type Selection: A Review and a Novel Method, Ren. Sust. Energy Rev., 2021, vol. 138, p. 110479.CrossRef
5.
go back to reference Fares, M., et al., Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids, Case Stud. Thermal Engin., 2020, vol. 18, p. 100584.CrossRef Fares, M., et al., Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids, Case Stud. Thermal Engin., 2020, vol. 18, p. 100584.CrossRef
6.
go back to reference Masuda, H., et al., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles, Netsu Bussei, 1993, vol. 4, no. 4, pp. 227–233.CrossRef Masuda, H., et al., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles, Netsu Bussei, 1993, vol. 4, no. 4, pp. 227–233.CrossRef
7.
go back to reference Ajeeb, W. and Murshed, S.S., Nanofluids in Compact Heat Exchangers for Thermal Applications: A State-of-the-Art Review, Thermal Sci. Engin. Progr., 2022, p. 101276.CrossRef Ajeeb, W. and Murshed, S.S., Nanofluids in Compact Heat Exchangers for Thermal Applications: A State-of-the-Art Review, Thermal Sci. Engin. Progr., 2022, p. 101276.CrossRef
8.
go back to reference Chakraborty, S. and Panigrahi, P.K., Stability of Nanofluid: A Review, Appl. Thermal Engin., 2020, vol. 174, p. 115259.CrossRef Chakraborty, S. and Panigrahi, P.K., Stability of Nanofluid: A Review, Appl. Thermal Engin., 2020, vol. 174, p. 115259.CrossRef
9.
go back to reference Ganvir, R., et al., Heat Transfer Characteristics in Nanofluid—A Review, Renew. Sust. Energy Rev., 2017, vol. 75, pp. 451–460.CrossRef Ganvir, R., et al., Heat Transfer Characteristics in Nanofluid—A Review, Renew. Sust. Energy Rev., 2017, vol. 75, pp. 451–460.CrossRef
10.
go back to reference Maxwell, J.C., A Treatise on Electricity and Magnetism, Clarendon, 1881. Maxwell, J.C., A Treatise on Electricity and Magnetism, Clarendon, 1881.
11.
go back to reference DeVera, Jr., A.L. and Strieder, W., Upper and Lower Bounds on the Thermal Conductivity of a Random, Two-Phase Material, J. Phys. Chem., 1977, vol. 81, no. 18, pp. 1783–1790.CrossRef DeVera, Jr., A.L. and Strieder, W., Upper and Lower Bounds on the Thermal Conductivity of a Random, Two-Phase Material, J. Phys. Chem., 1977, vol. 81, no. 18, pp. 1783–1790.CrossRef
12.
go back to reference Maı̈ga, S.E.B., et al., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlatt. Microstruct., 2004, vol. 35, no. 3, pp. 543–557.ADSCrossRef Maı̈ga, S.E.B., et al., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlatt. Microstruct., 2004, vol. 35, no. 3, pp. 543–557.ADSCrossRef
13.
go back to reference Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, no. 3, pp. 240–250.CrossRef Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, no. 3, pp. 240–250.CrossRef
14.
go back to reference Mintsa, H.A., et al., New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Thermal Sci., 2009, vol. 48, no. 2, pp. 363–371.CrossRef Mintsa, H.A., et al., New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Thermal Sci., 2009, vol. 48, no. 2, pp. 363–371.CrossRef
15.
go back to reference Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Annalen Phys., 1906, vol. 324, no. 2, pp. 289–306. Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Annalen Phys., 1906, vol. 324, no. 2, pp. 289–306.
16.
go back to reference Sharma, K., et al., Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube, Int. J. Microscale Nanoscale Thermal Fluid Transport Phenom., 2012, vol. 3, no. 4, pp. 1–25.MathSciNet Sharma, K., et al., Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube, Int. J. Microscale Nanoscale Thermal Fluid Transport Phenom., 2012, vol. 3, no. 4, pp. 1–25.MathSciNet
17.
go back to reference Nguyen, C., et al., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 6, pp. 1492–1506.CrossRef Nguyen, C., et al., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 6, pp. 1492–1506.CrossRef
18.
go back to reference Vajjha, R.S., et al., Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 21, pp. 4607–4618.CrossRef Vajjha, R.S., et al., Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 21, pp. 4607–4618.CrossRef
19.
go back to reference Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, Int. J., 1988, vol. 11, no. 2, pp. 151–170.ADSCrossRef Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, Int. J., 1988, vol. 11, no. 2, pp. 151–170.ADSCrossRef
20.
go back to reference Fotukian, S. and Esfahany, M.N., Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid inside a Circular Tube, Int. Comm. Heat Mass Transfer, 2010, vol. 37, no. 2, pp. 214–219.CrossRef Fotukian, S. and Esfahany, M.N., Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid inside a Circular Tube, Int. Comm. Heat Mass Transfer, 2010, vol. 37, no. 2, pp. 214–219.CrossRef
21.
go back to reference Syam Sundar, L., et al., Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Exp. Thermal Fluid Sci., 2012, vol. 37, pp. 65–71.CrossRef Syam Sundar, L., et al., Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Exp. Thermal Fluid Sci., 2012, vol. 37, pp. 65–71.CrossRef
22.
go back to reference Hong, J., et al., Effect of Laser Irradiation on Thermal Conductivity of ZnO Nanofluids, J. Phys.: Conf. Ser., 2007, vol. 59, p. 301. Hong, J., et al., Effect of Laser Irradiation on Thermal Conductivity of ZnO Nanofluids, J. Phys.: Conf. Ser., 2007, vol. 59, p. 301.
23.
go back to reference Kothandaraman, C., Heat and Mass Transfer Data Book, New Age Int., 2004. Kothandaraman, C., Heat and Mass Transfer Data Book, New Age Int., 2004.
24.
go back to reference Sundén, B., Computational Fluid Dynamics in Research and Design of Heat Exchangers, Heat Transfer Engin., 2007, vol. 28, no. 11, pp. 898–910.ADSCrossRef Sundén, B., Computational Fluid Dynamics in Research and Design of Heat Exchangers, Heat Transfer Engin., 2007, vol. 28, no. 11, pp. 898–910.ADSCrossRef
25.
go back to reference Ozden, E. and Tari, I., Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger, Energy Convers. Manag., 2010, vol. 51, no. 5, pp. 1004–1014.CrossRef Ozden, E. and Tari, I., Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger, Energy Convers. Manag., 2010, vol. 51, no. 5, pp. 1004–1014.CrossRef
26.
go back to reference Alfarawi, S., Evaluation of Hydro-Thermal Shell-Side Performance in a Shell-and-Tube Heat Exchanger: CFD Approach, J. Adv. Res. Fluid Mech. Thermal Sci., 2020, vol. 66, no. 1, pp. 104–119. Alfarawi, S., Evaluation of Hydro-Thermal Shell-Side Performance in a Shell-and-Tube Heat Exchanger: CFD Approach, J. Adv. Res. Fluid Mech. Thermal Sci., 2020, vol. 66, no. 1, pp. 104–119.
27.
go back to reference Anderson, J.D. and Wendt, J., Computational Fluid Dynamics, Springer, 1995. Anderson, J.D. and Wendt, J., Computational Fluid Dynamics, Springer, 1995.
28.
go back to reference Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Eng., 1976, vol. 16, no. 2, pp. 359–368. Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Eng., 1976, vol. 16, no. 2, pp. 359–368.
29.
go back to reference Notter, R. and Sleicher, C., A Solution to the Turbulent Graetz Problem—III, Fully Developed and Entry Region Heat Transfer Rates, Chem. Engin. Sci., 1972, vol. 27, no. 11, pp. 2073–2093.ADSCrossRef Notter, R. and Sleicher, C., A Solution to the Turbulent Graetz Problem—III, Fully Developed and Entry Region Heat Transfer Rates, Chem. Engin. Sci., 1972, vol. 27, no. 11, pp. 2073–2093.ADSCrossRef
30.
go back to reference Dittus, F. and Boelter, L., Publications on Engineering, University of California, Berkeley, 1930, vol. 2, no. 13, pp. 443–461. Dittus, F. and Boelter, L., Publications on Engineering, University of California, Berkeley, 1930, vol. 2, no. 13, pp. 443–461.
31.
go back to reference Blasius, H., Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Springer, 1913, pp. 1–41. Blasius, H., Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Springer, 1913, pp. 1–41.
Metadata
Title
Experimental and Numerical Investigation of Al2O3 Nanofluids Based Crude Oil in Shell and Tube Heat Exchanger
Authors
A. M. M. Al-Obaidi
M. Pirmohammadi
Publication date
01-09-2023
Publisher
Pleiades Publishing
Published in
Journal of Engineering Thermophysics / Issue 3/2023
Print ISSN: 1810-2328
Electronic ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823030098

Other articles of this Issue 3/2023

Journal of Engineering Thermophysics 3/2023 Go to the issue

Premium Partners