Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2023

01.09.2023

Experimental and Numerical Investigation of Al2O3 Nanofluids Based Crude Oil in Shell and Tube Heat Exchanger

verfasst von: A. M. M. Al-Obaidi, M. Pirmohammadi

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerical investigation of heat transfer augmentation with Al2O3 nanofluids-based crude oil in a shell and tube heat exchanger. This paper presents numerical and experimental investigations to study the effect of using Al2O3 nanofluids based crude oil on heat transfer enhancement in a turbulent regime with mass flow rate of (4 to 18 kg/s) in the shell and tube heat exchanger. The investigation concentrates on the effects of the Al2O3 based crude oil nanofluids on friction factor, flow characteristics and heat transfer, through shell and tube heat exchanger. The results show that the thermal conductivity as well as the viscosity of Al2O3 nanofluid based crude oil increased with increasing nanoparticles volume fraction and decreased with increasing the temperature. The outcomes revealed that the Nusselt number improved with increasing mass flow rate and also the friction factor increases dramatically using nanofluid this because of increment in nanofluid viscosity comparing to the base fluid (crude oil), additionally the results illustrate a constant pattern along the heat exchanger.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Towler, G. and Sinnott, R., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2021. Towler, G. and Sinnott, R., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2021.
2.
Zurück zum Zitat Chang, C., et al., Globally Optimal Design of Intensified Shell and Tube Heat Exchangers Using Complete Set Trimming, Comput. Chem. Engin., 2022, vol. 158, p. 107644.CrossRef Chang, C., et al., Globally Optimal Design of Intensified Shell and Tube Heat Exchangers Using Complete Set Trimming, Comput. Chem. Engin., 2022, vol. 158, p. 107644.CrossRef
3.
Zurück zum Zitat Kim, K., et al., Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions, Energies, 2021, vol. 14, no. 20, p. 6688.CrossRef Kim, K., et al., Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions, Energies, 2021, vol. 14, no. 20, p. 6688.CrossRef
4.
Zurück zum Zitat Wang, B., et al., Heat Exchanger Network Retrofit with Heat Exchanger and Material Type Selection: A Review and a Novel Method, Ren. Sust. Energy Rev., 2021, vol. 138, p. 110479.CrossRef Wang, B., et al., Heat Exchanger Network Retrofit with Heat Exchanger and Material Type Selection: A Review and a Novel Method, Ren. Sust. Energy Rev., 2021, vol. 138, p. 110479.CrossRef
5.
Zurück zum Zitat Fares, M., et al., Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids, Case Stud. Thermal Engin., 2020, vol. 18, p. 100584.CrossRef Fares, M., et al., Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids, Case Stud. Thermal Engin., 2020, vol. 18, p. 100584.CrossRef
6.
Zurück zum Zitat Masuda, H., et al., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles, Netsu Bussei, 1993, vol. 4, no. 4, pp. 227–233.CrossRef Masuda, H., et al., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles, Netsu Bussei, 1993, vol. 4, no. 4, pp. 227–233.CrossRef
7.
Zurück zum Zitat Ajeeb, W. and Murshed, S.S., Nanofluids in Compact Heat Exchangers for Thermal Applications: A State-of-the-Art Review, Thermal Sci. Engin. Progr., 2022, p. 101276.CrossRef Ajeeb, W. and Murshed, S.S., Nanofluids in Compact Heat Exchangers for Thermal Applications: A State-of-the-Art Review, Thermal Sci. Engin. Progr., 2022, p. 101276.CrossRef
8.
Zurück zum Zitat Chakraborty, S. and Panigrahi, P.K., Stability of Nanofluid: A Review, Appl. Thermal Engin., 2020, vol. 174, p. 115259.CrossRef Chakraborty, S. and Panigrahi, P.K., Stability of Nanofluid: A Review, Appl. Thermal Engin., 2020, vol. 174, p. 115259.CrossRef
9.
Zurück zum Zitat Ganvir, R., et al., Heat Transfer Characteristics in Nanofluid—A Review, Renew. Sust. Energy Rev., 2017, vol. 75, pp. 451–460.CrossRef Ganvir, R., et al., Heat Transfer Characteristics in Nanofluid—A Review, Renew. Sust. Energy Rev., 2017, vol. 75, pp. 451–460.CrossRef
10.
Zurück zum Zitat Maxwell, J.C., A Treatise on Electricity and Magnetism, Clarendon, 1881. Maxwell, J.C., A Treatise on Electricity and Magnetism, Clarendon, 1881.
11.
Zurück zum Zitat DeVera, Jr., A.L. and Strieder, W., Upper and Lower Bounds on the Thermal Conductivity of a Random, Two-Phase Material, J. Phys. Chem., 1977, vol. 81, no. 18, pp. 1783–1790.CrossRef DeVera, Jr., A.L. and Strieder, W., Upper and Lower Bounds on the Thermal Conductivity of a Random, Two-Phase Material, J. Phys. Chem., 1977, vol. 81, no. 18, pp. 1783–1790.CrossRef
12.
Zurück zum Zitat Maı̈ga, S.E.B., et al., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlatt. Microstruct., 2004, vol. 35, no. 3, pp. 543–557.ADSCrossRef Maı̈ga, S.E.B., et al., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlatt. Microstruct., 2004, vol. 35, no. 3, pp. 543–557.ADSCrossRef
13.
Zurück zum Zitat Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, no. 3, pp. 240–250.CrossRef Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, no. 3, pp. 240–250.CrossRef
14.
Zurück zum Zitat Mintsa, H.A., et al., New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Thermal Sci., 2009, vol. 48, no. 2, pp. 363–371.CrossRef Mintsa, H.A., et al., New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Thermal Sci., 2009, vol. 48, no. 2, pp. 363–371.CrossRef
15.
Zurück zum Zitat Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Annalen Phys., 1906, vol. 324, no. 2, pp. 289–306. Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Annalen Phys., 1906, vol. 324, no. 2, pp. 289–306.
16.
Zurück zum Zitat Sharma, K., et al., Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube, Int. J. Microscale Nanoscale Thermal Fluid Transport Phenom., 2012, vol. 3, no. 4, pp. 1–25.MathSciNet Sharma, K., et al., Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube, Int. J. Microscale Nanoscale Thermal Fluid Transport Phenom., 2012, vol. 3, no. 4, pp. 1–25.MathSciNet
17.
Zurück zum Zitat Nguyen, C., et al., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 6, pp. 1492–1506.CrossRef Nguyen, C., et al., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 6, pp. 1492–1506.CrossRef
18.
Zurück zum Zitat Vajjha, R.S., et al., Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 21, pp. 4607–4618.CrossRef Vajjha, R.S., et al., Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 21, pp. 4607–4618.CrossRef
19.
Zurück zum Zitat Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, Int. J., 1988, vol. 11, no. 2, pp. 151–170.ADSCrossRef Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, Int. J., 1988, vol. 11, no. 2, pp. 151–170.ADSCrossRef
20.
Zurück zum Zitat Fotukian, S. and Esfahany, M.N., Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid inside a Circular Tube, Int. Comm. Heat Mass Transfer, 2010, vol. 37, no. 2, pp. 214–219.CrossRef Fotukian, S. and Esfahany, M.N., Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid inside a Circular Tube, Int. Comm. Heat Mass Transfer, 2010, vol. 37, no. 2, pp. 214–219.CrossRef
21.
Zurück zum Zitat Syam Sundar, L., et al., Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Exp. Thermal Fluid Sci., 2012, vol. 37, pp. 65–71.CrossRef Syam Sundar, L., et al., Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Exp. Thermal Fluid Sci., 2012, vol. 37, pp. 65–71.CrossRef
22.
Zurück zum Zitat Hong, J., et al., Effect of Laser Irradiation on Thermal Conductivity of ZnO Nanofluids, J. Phys.: Conf. Ser., 2007, vol. 59, p. 301. Hong, J., et al., Effect of Laser Irradiation on Thermal Conductivity of ZnO Nanofluids, J. Phys.: Conf. Ser., 2007, vol. 59, p. 301.
23.
Zurück zum Zitat Kothandaraman, C., Heat and Mass Transfer Data Book, New Age Int., 2004. Kothandaraman, C., Heat and Mass Transfer Data Book, New Age Int., 2004.
24.
Zurück zum Zitat Sundén, B., Computational Fluid Dynamics in Research and Design of Heat Exchangers, Heat Transfer Engin., 2007, vol. 28, no. 11, pp. 898–910.ADSCrossRef Sundén, B., Computational Fluid Dynamics in Research and Design of Heat Exchangers, Heat Transfer Engin., 2007, vol. 28, no. 11, pp. 898–910.ADSCrossRef
25.
Zurück zum Zitat Ozden, E. and Tari, I., Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger, Energy Convers. Manag., 2010, vol. 51, no. 5, pp. 1004–1014.CrossRef Ozden, E. and Tari, I., Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger, Energy Convers. Manag., 2010, vol. 51, no. 5, pp. 1004–1014.CrossRef
26.
Zurück zum Zitat Alfarawi, S., Evaluation of Hydro-Thermal Shell-Side Performance in a Shell-and-Tube Heat Exchanger: CFD Approach, J. Adv. Res. Fluid Mech. Thermal Sci., 2020, vol. 66, no. 1, pp. 104–119. Alfarawi, S., Evaluation of Hydro-Thermal Shell-Side Performance in a Shell-and-Tube Heat Exchanger: CFD Approach, J. Adv. Res. Fluid Mech. Thermal Sci., 2020, vol. 66, no. 1, pp. 104–119.
27.
Zurück zum Zitat Anderson, J.D. and Wendt, J., Computational Fluid Dynamics, Springer, 1995. Anderson, J.D. and Wendt, J., Computational Fluid Dynamics, Springer, 1995.
28.
Zurück zum Zitat Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Eng., 1976, vol. 16, no. 2, pp. 359–368. Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Eng., 1976, vol. 16, no. 2, pp. 359–368.
29.
Zurück zum Zitat Notter, R. and Sleicher, C., A Solution to the Turbulent Graetz Problem—III, Fully Developed and Entry Region Heat Transfer Rates, Chem. Engin. Sci., 1972, vol. 27, no. 11, pp. 2073–2093.ADSCrossRef Notter, R. and Sleicher, C., A Solution to the Turbulent Graetz Problem—III, Fully Developed and Entry Region Heat Transfer Rates, Chem. Engin. Sci., 1972, vol. 27, no. 11, pp. 2073–2093.ADSCrossRef
30.
Zurück zum Zitat Dittus, F. and Boelter, L., Publications on Engineering, University of California, Berkeley, 1930, vol. 2, no. 13, pp. 443–461. Dittus, F. and Boelter, L., Publications on Engineering, University of California, Berkeley, 1930, vol. 2, no. 13, pp. 443–461.
31.
Zurück zum Zitat Blasius, H., Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Springer, 1913, pp. 1–41. Blasius, H., Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Springer, 1913, pp. 1–41.
Metadaten
Titel
Experimental and Numerical Investigation of Al2O3 Nanofluids Based Crude Oil in Shell and Tube Heat Exchanger
verfasst von
A. M. M. Al-Obaidi
M. Pirmohammadi
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823030098

Weitere Artikel der Ausgabe 3/2023

Journal of Engineering Thermophysics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.