Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2023

01.09.2023

Calculation of Heat Loads in Analysis of Superorbital Entry of Spacecraft into Atmosphere of the Earth

verfasst von: D. L. Reviznikov, A. V. Nenarokomov, M. S. Konstantinov, I. A. Nikolichev, A. V. Morzhukhina, L. M. Chernova

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Correlations for calculation of heat loads during a return of spacecraft at the second cosmic velocity are given. Analysis of the heat transfer for a model descent trajectory has been carried out. The convective and radiative heat fluxes, the relative heat transfer coefficient, and the radiative-equilibrium surface temperature have been calculated. The results obtained are a basis for design and optimization of the heat shield of spacecraft.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tirskii, G.A., Sakharov, V.I., Kovalev, V.L., Egorov, I.V., et al., Giperzvukovaya aerodinamika i teplomassoobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov (Hypersonic Aerodynamics and Heat-Mass Transfer of Landing Spacecraft and Planetary Space Sensors), Moscow: Fizmatlit, 2011. Tirskii, G.A., Sakharov, V.I., Kovalev, V.L., Egorov, I.V., et al., Giperzvukovaya aerodinamika i teplomassoobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov (Hypersonic Aerodynamics and Heat-Mass Transfer of Landing Spacecraft and Planetary Space Sensors), Moscow: Fizmatlit, 2011.
2.
Zurück zum Zitat Viviani, A. and Pezzella, G., Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, Springer, Switzerland, 2015.CrossRef Viviani, A. and Pezzella, G., Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, Springer, Switzerland, 2015.CrossRef
3.
Zurück zum Zitat Surzhikov, S.T., Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvumernye modeli (Computer Aerophysics of Landings Spacecraft. 2D Models), Moscow: Fizmatli, 2018. Surzhikov, S.T., Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvumernye modeli (Computer Aerophysics of Landings Spacecraft. 2D Models), Moscow: Fizmatli, 2018.
4.
Zurück zum Zitat Salomatov, V.V. and Salomatov, V.V., Computational Modeling of Turbulent Flows, J. Eng. Therm., 2020, vol. 29, no. 1, pp.156–169; https://doi.org/10.1134/S1810232820010117.CrossRef Salomatov, V.V. and Salomatov, V.V., Computational Modeling of Turbulent Flows, J. Eng. Therm., 2020, vol. 29, no. 1, pp.156–169; https://​doi.​org/​10.​1134/​S181023282001011​7.​CrossRef
5.
Zurück zum Zitat Surzhikov, S.T., Radiation Gas Dynamics of the Frontal Surface of the Command Module of Apollo-4 at Superorbital Entry into the Atmosphere, Izv. RAN. MZHG, 2017, vol. 6, pp. 108–124. Surzhikov, S.T., Radiation Gas Dynamics of the Frontal Surface of the Command Module of Apollo-4 at Superorbital Entry into the Atmosphere, Izv. RAN. MZHG, 2017, vol. 6, pp. 108–124.
6.
Zurück zum Zitat Surzhikov, S.T., Radiation Aerothermodynamics of the Stardust Space Vehicle, J. Appl. Math. Mech., 2016, vol. 80, no. 1, pp. 44–56; https://doi.org/10.1016/j.jappmathmech.2016.05.008.ADSMathSciNetCrossRefMATH Surzhikov, S.T., Radiation Aerothermodynamics of the Stardust Space Vehicle, J. Appl. Math. Mech., 2016, vol. 80, no. 1, pp. 44–56; https://​doi.​org/​10.​1016/​j.​jappmathmech.​2016.​05.​008.​ADSMathSciNetCrossRefMATH
7.
Zurück zum Zitat Egorov, I.V. and Nikol’skii, V.S., Viscous Hypersonic Currents for Various Aerophysical Models, Izv. RAN. MZHG, 1996, vol. 4, pp. 151–161. Egorov, I.V. and Nikol’skii, V.S., Viscous Hypersonic Currents for Various Aerophysical Models, Izv. RAN. MZHG, 1996, vol. 4, pp. 151–161.
8.
Zurück zum Zitat Gurvich, L.V., Veitz, I.V., et al., Termodinamicheskie svoistva individual’nykh veshchestv: spravochnoe izdanie v 4-kh tomakh (Thermodynamic Properties of Individual Substances: Reference Edition in 4 Volumes), Moscow: Nauka, 1982. Gurvich, L.V., Veitz, I.V., et al., Termodinamicheskie svoistva individual’nykh veshchestv: spravochnoe izdanie v 4-kh tomakh (Thermodynamic Properties of Individual Substances: Reference Edition in 4 Volumes), Moscow: Nauka, 1982.
9.
Zurück zum Zitat Park, C., Howe, J., and Jaffe, R., Review of Chemical-Kinetic Problems of Future NASA Mission, II: Mars Entries, J. Therm. Heat Transfer, 1994, vol. 8, no. 1, pp. 9–23; https://doi.org/10.2514/3.496.ADSCrossRef Park, C., Howe, J., and Jaffe, R., Review of Chemical-Kinetic Problems of Future NASA Mission, II: Mars Entries, J. Therm. Heat Transfer, 1994, vol. 8, no. 1, pp. 9–23; https://​doi.​org/​10.​2514/​3.​496.​ADSCrossRef
10.
Zurück zum Zitat Wood, W.A. and Eberhardt, S., Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows, AIAA Paper, 1995, vol. 95–0158; https://doiorg/10.2514/6.1995-158. Wood, W.A. and Eberhardt, S., Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows, AIAA Paper, 1995, vol. 95–0158; https://​doiorg/​10.​2514/​6.​1995-158.​
11.
Zurück zum Zitat Afonina, N.E., Gromov, V.G., and Kovalyov, V.L., Heat Transfer with Catalytic Surfaces of Heat Shield of Spacecraft Entering the Atmosphere of Mars, Mat. Model., 2000, vol. 12, no. 7, pp. 79–86. Afonina, N.E., Gromov, V.G., and Kovalyov, V.L., Heat Transfer with Catalytic Surfaces of Heat Shield of Spacecraft Entering the Atmosphere of Mars, Mat. Model., 2000, vol. 12, no. 7, pp. 79–86.
12.
Zurück zum Zitat Alnak, D.E., Koca, F., and Alnak, Y.A., Numerical Investigation of Heat Transfer from Heated Surfaces of Different Shapes, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 494–507; https://doi.org/10.1134/ S1810232821030127.CrossRef Alnak, D.E., Koca, F., and Alnak, Y.A., Numerical Investigation of Heat Transfer from Heated Surfaces of Different Shapes, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 494–507; https://​doi.​org/​10.​1134/​ S1810232821030127.CrossRef
13.
Zurück zum Zitat Zel’dovich, Ya.B. and Raiser, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Fizmatlit, 2008. Zel’dovich, Ya.B. and Raiser, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Fizmatlit, 2008.
14.
Zurück zum Zitat Reviznikov, D.L. and Sukharev, T.Yu., Hypersonic Flow around Blunt Bodies in the Atmosphere of the Earth and Mars. Comparative Analysis of Mathematical Models, Tepl. Prots. Tekhn., 2018, vol. 10, nos. 1/2, pp. 5–15. Reviznikov, D.L. and Sukharev, T.Yu., Hypersonic Flow around Blunt Bodies in the Atmosphere of the Earth and Mars. Comparative Analysis of Mathematical Models, Tepl. Prots. Tekhn., 2018, vol. 10, nos. 1/2, pp. 5–15.
15.
Zurück zum Zitat Nomura, W., Determination of Heat Flux Density at Critical Point of Blunt Body in Hypersonic Flux at Small Reynolds Numbers, AKT, 1984, vol. 2, no. 7. Nomura, W., Determination of Heat Flux Density at Critical Point of Blunt Body in Hypersonic Flux at Small Reynolds Numbers, AKT, 1984, vol. 2, no. 7.
16.
Zurück zum Zitat Johnston, C.O., Hollis, B.R., and Sutton, K., Nonequilibrium Stagnation-Line Radiative Heating for Fire-II, JSR, 2008, vol. 45, no. 6, p. 1185; https://doi.org/10.2514/1.33008.ADSCrossRef Johnston, C.O., Hollis, B.R., and Sutton, K., Nonequilibrium Stagnation-Line Radiative Heating for Fire-II, JSR, 2008, vol. 45, no. 6, p. 1185; https://​doi.​org/​10.​2514/​1.​33008.​ADSCrossRef
17.
Zurück zum Zitat Cornette, E.S., Forebody Temperatures and Calorimeter Heating Rates Measured during Project Fire II Reentry at 11.35 km/s, NASA TM X-13 05, 1966. Cornette, E.S., Forebody Temperatures and Calorimeter Heating Rates Measured during Project Fire II Reentry at 11.35 km/s, NASA TM X-13 05, 1966.
18.
Zurück zum Zitat Olynick, D.R., Henline, W.D., Hartung, L.C., and Candler, G.V., Comparison of Coupled Radiative Navier–Stokes Flow Solutions with the Project Fire-II Flight Data, AIAA, 1994; https://doi.org/10.2514/6.1994-1955. Olynick, D.R., Henline, W.D., Hartung, L.C., and Candler, G.V., Comparison of Coupled Radiative Navier–Stokes Flow Solutions with the Project Fire-II Flight Data, AIAA, 1994; https://​doi.​org/​10.​2514/​6.​1994-1955.​
19.
Zurück zum Zitat Surzhikov, S.T. and Shuvalov, M.P., Testing of Calculated Data on Radiation and Convective Heating of Landing New-Generation Spacecraft, Teplofiz. Vys. Temp., 2013, vol. 51, no. 3, pp. 456–470. Surzhikov, S.T. and Shuvalov, M.P., Testing of Calculated Data on Radiation and Convective Heating of Landing New-Generation Spacecraft, Teplofiz. Vys. Temp., 2013, vol. 51, no. 3, pp. 456–470.
20.
Zurück zum Zitat Surzhikov, S.T. and Shuvalov, M.P., Analysis of Radiation-Convective Heating of Four Types of Landing Spacecraft, Fiz.-Khim. Kinet. Gaz. Din., 2014, vol. 15, no. 4. Surzhikov, S.T. and Shuvalov, M.P., Analysis of Radiation-Convective Heating of Four Types of Landing Spacecraft, Fiz.-Khim. Kinet. Gaz. Din., 2014, vol. 15, no. 4.
21.
Zurück zum Zitat Shevelev, Yu.D. and Syzranova, N.G., Influence of Chemical Reactions on Heat Transfer in the Boundary Layer, Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10, no. 2, pp. 91–126. Shevelev, Yu.D. and Syzranova, N.G., Influence of Chemical Reactions on Heat Transfer in the Boundary Layer, Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10, no. 2, pp. 91–126.
22.
Zurück zum Zitat Brandis, A.M. and Johnston, C.O., Characterization of Stagnation-Point Heat Flux for Earth Entry, AIAA, 2014; https://doi.org/10.2514/6.2014-2374. Brandis, A.M. and Johnston, C.O., Characterization of Stagnation-Point Heat Flux for Earth Entry, AIAA, 2014; https://​doi.​org/​10.​2514/​6.​2014-2374.​
23.
Zurück zum Zitat Samarskii, A.A. and Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989. Samarskii, A.A. and Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.
24.
Zurück zum Zitat Avduevskii, V.S. and Koshkin, V.K., Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Basics of Heat Transfer in Aviation and Rocket-Space Technology), Moscow: Mashinostroenie, 1992. Avduevskii, V.S. and Koshkin, V.K., Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Basics of Heat Transfer in Aviation and Rocket-Space Technology), Moscow: Mashinostroenie, 1992.
25.
Zurück zum Zitat Fay, J.A. and Ridell, F.R., Theory of Stagnation Point Heat Transfer in Dissociated Air, J. Aeronavt. Sci., 1958, vol. 25, no. 2, pp. 73–82; https://doi.org/10.2514/8.7517. Fay, J.A. and Ridell, F.R., Theory of Stagnation Point Heat Transfer in Dissociated Air, J. Aeronavt. Sci., 1958, vol. 25, no. 2, pp. 73–82; https://​doi.​org/​10.​2514/​8.​7517.​
26.
Zurück zum Zitat Tauber, M.E. and Sutton, K., Stagnation-Point Radiative Heating Relations for Earth and Mars Entries, J. Spacecraft, 1991, vol. 28, no. 1, p. 40; https://doi.org/10.2514/3.26206.ADSCrossRef Tauber, M.E. and Sutton, K., Stagnation-Point Radiative Heating Relations for Earth and Mars Entries, J. Spacecraft, 1991, vol. 28, no. 1, p. 40; https://​doi.​org/​10.​2514/​3.​26206.​ADSCrossRef
27.
Zurück zum Zitat Johnson, J.E., Starkey, R.P., and Lewis, M.J., Aerothermodynamic Optimization of Reentry Heat Shield Shapes for a Crew Exploration Vehicle, J. Spacecraft Rockets, 2007, vol. 44, no. 4, p. 849; https://doi.org/ 10.2514/1.27219.ADSCrossRef Johnson, J.E., Starkey, R.P., and Lewis, M.J., Aerothermodynamic Optimization of Reentry Heat Shield Shapes for a Crew Exploration Vehicle, J. Spacecraft Rockets, 2007, vol. 44, no. 4, p. 849; https://​doi.​org/​ 10.2514/1.27219.ADSCrossRef
Metadaten
Titel
Calculation of Heat Loads in Analysis of Superorbital Entry of Spacecraft into Atmosphere of the Earth
verfasst von
D. L. Reviznikov
A. V. Nenarokomov
M. S. Konstantinov
I. A. Nikolichev
A. V. Morzhukhina
L. M. Chernova
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823030050

Weitere Artikel der Ausgabe 3/2023

Journal of Engineering Thermophysics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.