Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2023

01.09.2023

Energy Recovery Based on Exhaust Gas Recirculation and Heat Regeneration Processes Applied in a Firewood Boiler

verfasst von: N. R. Caetano, B. P. da Silva, A. C. Ruoso, A. G. Avila, L. A. O. Rocha, G. Lorenzini

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research investigated the exhaust gas recirculation (EGR) process to recover part of the thermal and chemical energy left in the exhaust boiler stream. A theoretical energy conversion and use analysis was performed based on a small boiler. Several measurements and analyses of the operation reports provided the boundary conditions and relevant information for modelling the processes. The methodology considered the radiation from exhaust gases, thermodynamics balances, and financial engineering calculations for the energy recovery analysis. Financial results indicate that the exhaust gas recirculation process implementation, regarding 20% of the EGR ratio, presented 69% and 1.45 years of internal returning rate and payback, respectively. However, the regenerative process presented an internal returning rate and payback values of 112% and 0.9 years. Indeed, both processes might be applied in order to increase efficiency and reduce emissions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hamid Elsheikh, M., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Haji Hassan, M., Ali Bashir, M.B., et al., A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance. Renew. Sust. Energy Rev., 2014, vol. 30, pp. 337–355; https://doi.org/10.1016/j.rser.2013.10.027.CrossRef Hamid Elsheikh, M., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Haji Hassan, M., Ali Bashir, M.B., et al., A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance. Renew. Sust. Energy Rev., 2014, vol. 30, pp. 337–355; https://​doi.​org/​10.​1016/​j.​rser.​2013.​10.​027.​CrossRef
2.
Zurück zum Zitat Patronelli, S., Antonelli, M., Tognotti, L., and Galletti, C., Combustion of Wood-Chips in a Small-Scale Fixed-Bed Boiler: Validation of the Numerical Model through In-Flame Measurements, Fuel, 2018, vol. 221, pp. 128–117.CrossRef Patronelli, S., Antonelli, M., Tognotti, L., and Galletti, C., Combustion of Wood-Chips in a Small-Scale Fixed-Bed Boiler: Validation of the Numerical Model through In-Flame Measurements, Fuel, 2018, vol. 221, pp. 128–117.CrossRef
3.
Zurück zum Zitat Arahuetes, A. and Olcina Cantos, J., The Potential of Sustainable Urban Drainage Systems (SuDS) as an Adaptive Strategy to Climate Change in the Spanish Mediterranean, Int. J. Envir. Stud., 2019, vol. 76, pp. 764–779; https://doi.org/10.1080/00207233.2019.1634927.CrossRef Arahuetes, A. and Olcina Cantos, J., The Potential of Sustainable Urban Drainage Systems (SuDS) as an Adaptive Strategy to Climate Change in the Spanish Mediterranean, Int. J. Envir. Stud., 2019, vol. 76, pp. 764–779; https://​doi.​org/​10.​1080/​00207233.​2019.​1634927.​CrossRef
4.
Zurück zum Zitat Whiteman, A., Wickramasinghe, A., and Piña, L., Global Trends in Forest Ownership, Public Income and Expenditure on Forestry and Forestry Employment, For. Ecol. Manag., vol. 2015, no. 352, pp. 99–108; https://doi.org/10.1016/j.foreco.2015.04.011.CrossRef Whiteman, A., Wickramasinghe, A., and Piña, L., Global Trends in Forest Ownership, Public Income and Expenditure on Forestry and Forestry Employment, For. Ecol. Manag., vol. 2015, no. 352, pp. 99–108; https://​doi.​org/​10.​1016/​j.​foreco.​2015.​04.​011.​CrossRef
5.
Zurück zum Zitat Goh, C.S., Junginger, M., Cocchi, M., Marchal, D., Thrän, D., Hennig, C., et al., Wood Pellet Market and Trade: A Global Perspective, Biofuels, Bioprod. Bioref., 2013, vol. 7, pp. 24–42; https://doi.org/ 10.1002/bbb.1366.CrossRef Goh, C.S., Junginger, M., Cocchi, M., Marchal, D., Thrän, D., Hennig, C., et al., Wood Pellet Market and Trade: A Global Perspective, Biofuels, Bioprod. Bioref., 2013, vol. 7, pp. 24–42; https://​doi.​org/​ 10.1002/bbb.1366.CrossRef
6.
Zurück zum Zitat García Torrent, J., Ramírez-Gómez, Á, Fernandez-Anez, N., Medic Pejic, L., and Tascón, A., Influence of the Composition of Solid Biomass in the Flammability and Susceptibility to Spontaneous Combustion, Fuel, 2016, vol. 184, pp. 503–511; https://doi.org/10.1016/j.fuel.2016.07.045.CrossRef García Torrent, J., Ramírez-Gómez, Á, Fernandez-Anez, N., Medic Pejic, L., and Tascón, A., Influence of the Composition of Solid Biomass in the Flammability and Susceptibility to Spontaneous Combustion, Fuel, 2016, vol. 184, pp. 503–511; https://​doi.​org/​10.​1016/​j.​fuel.​2016.​07.​045.​CrossRef
7.
Zurück zum Zitat Da Silva, B.P., Saccol, F., Caetano, N.R., Pedrazzi, C., and Caetano, N.R., Technical and Economic Viability for the Briquettes Manufacture, Def. Diffus. Forum, , vol. 2017, no. 380, pp. 218–226; https://doi.org/ 10.4028/www.scientific.net/DDF.380.218.CrossRef Da Silva, B.P., Saccol, F., Caetano, N.R., Pedrazzi, C., and Caetano, N.R., Technical and Economic Viability for the Briquettes Manufacture, Def. Diffus. Forum, , vol. 2017, no. 380, pp. 218–226; https://​doi.​org/​ 10.4028/www.scientific.net/DDF.380.218.CrossRef
8.
Zurück zum Zitat Alanne, K., Laukkanen, T., Saari, K., and Jokisalo, J., Analysis of a Wooden Pellet Fueled Domestic Thermoelectric Cogeneration System, Appl. Therm. Eng., 2014, vol. 63, pp. 1–10.CrossRef Alanne, K., Laukkanen, T., Saari, K., and Jokisalo, J., Analysis of a Wooden Pellet Fueled Domestic Thermoelectric Cogeneration System, Appl. Therm. Eng., 2014, vol. 63, pp. 1–10.CrossRef
9.
Zurück zum Zitat Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., and Mekhilef, S., A Review on Biomass as a Fuel for Boilers, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 2262–2289; https://doi.org/10.1016/ j.rser.2011.02.015.CrossRef Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., and Mekhilef, S., A Review on Biomass as a Fuel for Boilers, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 2262–2289; https://​doi.​org/​10.​1016/​ j.rser.2011.02.015.CrossRef
10.
Zurück zum Zitat Baral, A. and Guha, G., Trees for Carbon Sequestration or Fossil Fuel Substitution: The Issue of Cost vs. Carbon Benefit, Biomass Bioenergy, 2004, vol. 10, pp. 23–37. Baral, A. and Guha, G., Trees for Carbon Sequestration or Fossil Fuel Substitution: The Issue of Cost vs. Carbon Benefit, Biomass Bioenergy, 2004, vol. 10, pp. 23–37.
11.
Zurück zum Zitat Yin, C, Rosendahl, L.A., and Kær, S.K., Grate-Firing of Biomass for Heat and Power Production, Prog. Energy Combust. Sci., 2008, vol. 34, pp. 725–754; https://doi.org/10.1016/j.pecs.2008.05.002.CrossRef Yin, C, Rosendahl, L.A., and Kær, S.K., Grate-Firing of Biomass for Heat and Power Production, Prog. Energy Combust. Sci., 2008, vol. 34, pp. 725–754; https://​doi.​org/​10.​1016/​j.​pecs.​2008.​05.​002.​CrossRef
12.
Zurück zum Zitat Proto, A.R., Bacenetti, J., Macrí, G., and Zimbalatti, G., Roundwood and Bioenergy Production from Forestry: Environmental Impact Assessment Considering Different Logging Systems, J. Clean. Prod., 2017, vol. 165, pp. 1485–1498; https://doi.org/10.1016/j.jclepro.2017.07.227.CrossRef Proto, A.R., Bacenetti, J., Macrí, G., and Zimbalatti, G., Roundwood and Bioenergy Production from Forestry: Environmental Impact Assessment Considering Different Logging Systems, J. Clean. Prod., 2017, vol. 165, pp. 1485–1498; https://​doi.​org/​10.​1016/​j.​jclepro.​2017.​07.​227.​CrossRef
13.
Zurück zum Zitat Zhang, X., Yu, T., Yang, B., Zheng, L., and Huang, L. Approximate Ideal Multi-Objective Solution \(Q(\lambda )\) Learning for Optimal Carbon, Energy Convers. Manag., 2015, vol. 106, pp. 543–556.CrossRef Zhang, X., Yu, T., Yang, B., Zheng, L., and Huang, L. Approximate Ideal Multi-Objective Solution \(Q(\lambda )\) Learning for Optimal Carbon, Energy Convers. Manag., 2015, vol. 106, pp. 543–556.CrossRef
14.
Zurück zum Zitat Klunk, M.A., Dasgupta, S., and Das, M., Slow Pyrolysis of Rice Straw: Analysis of Biochar, Bio-Oil and Gas, South Brazilian J. Chem., 2018, vol. 26, pp. 17–25.CrossRef Klunk, M.A., Dasgupta, S., and Das, M., Slow Pyrolysis of Rice Straw: Analysis of Biochar, Bio-Oil and Gas, South Brazilian J. Chem., 2018, vol. 26, pp. 17–25.CrossRef
15.
Zurück zum Zitat Klunk, M.A., Dasgupta, S., and Das, M. Influence of Fast Pyrolysis with Temperature on Gas, Char and Bio-Oil Production, South Brazilian J. Chem., 2017, vol. 25, pp. 1–11. Klunk, M.A., Dasgupta, S., and Das, M. Influence of Fast Pyrolysis with Temperature on Gas, Char and Bio-Oil Production, South Brazilian J. Chem., 2017, vol. 25, pp. 1–11.
16.
Zurück zum Zitat Fearnside, P.M. and Pueyo, S., Greenhouse-Gas Emissions from Tropical Dams, Nat. Clim. Chang. 2012, vol. 2, pp. 382–384; https://doi.org/10.1038/nclimate1540.ADSCrossRef Fearnside, P.M. and Pueyo, S., Greenhouse-Gas Emissions from Tropical Dams, Nat. Clim. Chang. 2012, vol. 2, pp. 382–384; https://​doi.​org/​10.​1038/​nclimate1540.​ADSCrossRef
17.
Zurück zum Zitat De Oliveira Fraga, A., Klunk, M.A., De Oliveira, A.A., Furtado, G.G., Knörnschild, G., and Dick, L.F.P., Soil Corrosion of the AISI1020 Steel Buried Near Electrical Power Transmission Line Towers, Mat. Res., 2014, vol. 17, pp. 1637–1643; https://doi.org/10.1590/1516-1439.305714.CrossRef De Oliveira Fraga, A., Klunk, M.A., De Oliveira, A.A., Furtado, G.G., Knörnschild, G., and Dick, L.F.P., Soil Corrosion of the AISI1020 Steel Buried Near Electrical Power Transmission Line Towers, Mat. Res., 2014, vol. 17, pp. 1637–1643; https://​doi.​org/​10.​1590/​1516-1439.​305714.​CrossRef
18.
Zurück zum Zitat Dos Santos, M.A., Damázio, J.M., Rogério, J.P., Amorim, M.A., Medeiros, A.M., Abreu, J.L.S., Maceira, M.E.P., Melo, A.C., and Rosa, L.P., Estimates of GHG Emissions by Hydroelectric Reservoirs: The Brazilian case, Energy, 2017, vol. 133, pp. 99–107.CrossRef Dos Santos, M.A., Damázio, J.M., Rogério, J.P., Amorim, M.A., Medeiros, A.M., Abreu, J.L.S., Maceira, M.E.P., Melo, A.C., and Rosa, L.P., Estimates of GHG Emissions by Hydroelectric Reservoirs: The Brazilian case, Energy, 2017, vol. 133, pp. 99–107.CrossRef
19.
Zurück zum Zitat Klunk, M.A., De Oliveira, A.A., Furtado, G.G., Knörnschild, G., and Dick, L.F., Study of the Corrosion of Buried Steel Grids of Electrical Power Transmission Towers ECS Trans, 2019, vol. 43, pp. 23–27; https://doi.org/10.1149/1.4704934.CrossRef Klunk, M.A., De Oliveira, A.A., Furtado, G.G., Knörnschild, G., and Dick, L.F., Study of the Corrosion of Buried Steel Grids of Electrical Power Transmission Towers ECS Trans, 2019, vol. 43, pp. 23–27; https://​doi.​org/​10.​1149/​1.​4704934.​CrossRef
20.
Zurück zum Zitat Zahedi, A. Maximizing Solar PV Energy Penetration Using Energy Storage Technology, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 866–870; https://doi.org/10.1016/j.rser.2010.09.011.CrossRef Zahedi, A. Maximizing Solar PV Energy Penetration Using Energy Storage Technology, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 866–870; https://​doi.​org/​10.​1016/​j.​rser.​2010.​09.​011.​CrossRef
21.
Zurück zum Zitat Sivaraman, M.R., The Role of Climate Change in Global Economic Development, Int. J. Envir. Stud., 2014, vol. 71, pp. 221–225; https://doi.org/10.1080/00207233.2013.870687.CrossRef Sivaraman, M.R., The Role of Climate Change in Global Economic Development, Int. J. Envir. Stud., 2014, vol. 71, pp. 221–225; https://​doi.​org/​10.​1080/​00207233.​2013.​870687.​CrossRef
22.
Zurück zum Zitat Schuck, S., Biomass as an Energy Source, Int. J. Envir. Stud., 2006, vol. 63, pp. 823–835; https://doi.org/ 10.1080/00207230601047222.CrossRef Schuck, S., Biomass as an Energy Source, Int. J. Envir. Stud., 2006, vol. 63, pp. 823–835; https://​doi.​org/​ 10.1080/00207230601047222.CrossRef
23.
Zurück zum Zitat Diamond-Smith, N., Smith, K.R., and Hodoglugil, N.N.S., Climate Change and Population in the Muslim World, Int. J. Envir. Stud., 2011, vol. 68, pp. 1–8; https://doi.org/10.1080/00207233.2010.537053.CrossRef Diamond-Smith, N., Smith, K.R., and Hodoglugil, N.N.S., Climate Change and Population in the Muslim World, Int. J. Envir. Stud., 2011, vol. 68, pp. 1–8; https://​doi.​org/​10.​1080/​00207233.​2010.​537053.​CrossRef
24.
Zurück zum Zitat Ren, G., Liu, J., Wan, J., Guo, Y., and Yu, D., Overview of Wind Power Intermittency: Impacts, Measurements, and Mitigation Solutions, Appl. Energy, 2017, vol. 204, pp. 47–65.CrossRef Ren, G., Liu, J., Wan, J., Guo, Y., and Yu, D., Overview of Wind Power Intermittency: Impacts, Measurements, and Mitigation Solutions, Appl. Energy, 2017, vol. 204, pp. 47–65.CrossRef
25.
Zurück zum Zitat Pierobon, F., Zanetti, M., Grigolato, S., Sgarbossa, A., Anfodillo, T., and Cavalli, R., Life Cycle Environmental Impact of Firewood Production—A Case Study in Italy, Appl. Energy, 2015, vol. 150, pp. 185–195.CrossRef Pierobon, F., Zanetti, M., Grigolato, S., Sgarbossa, A., Anfodillo, T., and Cavalli, R., Life Cycle Environmental Impact of Firewood Production—A Case Study in Italy, Appl. Energy, 2015, vol. 150, pp. 185–195.CrossRef
26.
Zurück zum Zitat Spinelli, R., Ward, S.M., and Owende, P.M., A Harvest and Transport Cost Model for Eucalyptus spp. Fast-Growing Short Rotation Plantations, Biomass Bioenergy, 2009, vol. 33, pp. 1265–1270.CrossRef Spinelli, R., Ward, S.M., and Owende, P.M., A Harvest and Transport Cost Model for Eucalyptus spp. Fast-Growing Short Rotation Plantations, Biomass Bioenergy, 2009, vol. 33, pp. 1265–1270.CrossRef
27.
Zurück zum Zitat Brazil. CAGED, Cadastro Geral do Empregados and Desempregados, GovBr, 2012. Brazil. CAGED, Cadastro Geral do Empregados and Desempregados, GovBr, 2012.
28.
Zurück zum Zitat Tang, E., Peng, C., and Xu, Y., Changes of Energy Consumption with Economic Development when an Economy Becomes More Productive, J. Clean. Prod., 2018, vol. 196, pp. 788–795; https://doi.org/10.1016/ j.jclepro.2018.06.101.CrossRef Tang, E., Peng, C., and Xu, Y., Changes of Energy Consumption with Economic Development when an Economy Becomes More Productive, J. Clean. Prod., 2018, vol. 196, pp. 788–795; https://​doi.​org/​10.​1016/​ j.jclepro.2018.06.101.CrossRef
29.
Zurück zum Zitat Guerra, S.P.S., Garcia, E.A., Lanças, K.P., Rezende, M.A., and Spinelli, R., Heating Value of Eucalypt Wood Grown on SRC for Energy Production, Fuel, 2014, vol. 137, pp. 360–363; https://doi.org/10.1016/ j.fuel.2014.07.103.CrossRef Guerra, S.P.S., Garcia, E.A., Lanças, K.P., Rezende, M.A., and Spinelli, R., Heating Value of Eucalypt Wood Grown on SRC for Energy Production, Fuel, 2014, vol. 137, pp. 360–363; https://​doi.​org/​10.​1016/​ j.fuel.2014.07.103.CrossRef
30.
Zurück zum Zitat Thapa, S., Borquist, E., and Weiss, L., Thermal Energy Recovery via Integrated Small Scale Boiler and Superheater, Energy, 2018, vol. 142, pp. 765–772; https://doi.org/10.1016/j.energy.2017.10.063.CrossRef Thapa, S., Borquist, E., and Weiss, L., Thermal Energy Recovery via Integrated Small Scale Boiler and Superheater, Energy, 2018, vol. 142, pp. 765–772; https://​doi.​org/​10.​1016/​j.​energy.​2017.​10.​063.​CrossRef
31.
Zurück zum Zitat Sagani, A., Hagidimitriou, M., and Dedoussis, V., Perennial Tree Pruning Biomass Waste Exploitation for Electricity Generation: The Perspective of Greece, Sust. Energy Technol. Assess., 2019, vol. 31, pp. 77–85; https://doi.org/10.1016/j.seta.2018.11.001.CrossRef Sagani, A., Hagidimitriou, M., and Dedoussis, V., Perennial Tree Pruning Biomass Waste Exploitation for Electricity Generation: The Perspective of Greece, Sust. Energy Technol. Assess., 2019, vol. 31, pp. 77–85; https://​doi.​org/​10.​1016/​j.​seta.​2018.​11.​001.​CrossRef
32.
Zurück zum Zitat Díez, H.E., Natalia, I., and Pérez, J.F., Mass, Energy, and Exergy Analysis of the Microgasification Process in a Top-Lit Updraft Reactor: Effects of Firewood Type and Forced Primary Air Flow, Sust. Energy Technol. Assess., 2018, vol. 29, pp. 82–91; https://doi.org/10.1016/j.seta.2018.07.003.CrossRef Díez, H.E., Natalia, I., and Pérez, J.F., Mass, Energy, and Exergy Analysis of the Microgasification Process in a Top-Lit Updraft Reactor: Effects of Firewood Type and Forced Primary Air Flow, Sust. Energy Technol. Assess., 2018, vol. 29, pp. 82–91; https://​doi.​org/​10.​1016/​j.​seta.​2018.​07.​003.​CrossRef
33.
Zurück zum Zitat Ahmadi, L., Kannangara, M., and Bensebaa, F., Cost-Effectiveness of Small Scale Biomass Supply Chain and Bioenergy Production Systems in Carbon Credit Markets: A Life Cycle Perspective, Sust. Energy Technol. Assess., 2020, vol. 37, p. 100627; https://doi.org/10.1016/j.seta.2019.100627.CrossRef Ahmadi, L., Kannangara, M., and Bensebaa, F., Cost-Effectiveness of Small Scale Biomass Supply Chain and Bioenergy Production Systems in Carbon Credit Markets: A Life Cycle Perspective, Sust. Energy Technol. Assess., 2020, vol. 37, p. 100627; https://​doi.​org/​10.​1016/​j.​seta.​2019.​100627.​CrossRef
34.
Zurück zum Zitat Adams, P.W.R. and Mcmanus, M.C., Small-Scale Biomass Gasification CHP Utilisation in Industry: Energy and Environmental Evaluation, Sust. Energy Technol. Assess., 2014, vol. 6, pp. 129–140; https://doi.org/ 10.1016/j.seta.2014.02.002.CrossRef Adams, P.W.R. and Mcmanus, M.C., Small-Scale Biomass Gasification CHP Utilisation in Industry: Energy and Environmental Evaluation, Sust. Energy Technol. Assess., 2014, vol. 6, pp. 129–140; https://​doi.​org/​ 10.1016/j.seta.2014.02.002.CrossRef
35.
Zurück zum Zitat Okoko, A., Reinhard, J., Wymann, S., Dach, V., Zah, R., Kiteme, B., et al., The Carbon Footprints of Alternative Value Chains for Biomass Energy for Cooking in Kenya and Tanzania, Sust. Energy Technol. Assess., 2017, vol. 22, pp. 124–133; https://doi.org/10.1016/j.seta.2017.02.017.CrossRef Okoko, A., Reinhard, J., Wymann, S., Dach, V., Zah, R., Kiteme, B., et al., The Carbon Footprints of Alternative Value Chains for Biomass Energy for Cooking in Kenya and Tanzania, Sust. Energy Technol. Assess., 2017, vol. 22, pp. 124–133; https://​doi.​org/​10.​1016/​j.​seta.​2017.​02.​017.​CrossRef
36.
Zurück zum Zitat Agrawal, A.K., Singh, S.K., Sinha, S., and Shukla, M.K., Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines, Sadhana–Acad. Proc. Eng. Sci., 2004, vol. 29, pp. 275–284; https://doi.org/10.1007/BF02703777.CrossRef Agrawal, A.K., Singh, S.K., Sinha, S., and Shukla, M.K., Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines, Sadhana–Acad. Proc. Eng. Sci., 2004, vol. 29, pp. 275–284; https://​doi.​org/​10.​1007/​BF02703777.​CrossRef
37.
Zurück zum Zitat Ali, U., Best, T., Finney, K.N., Palma, C.F., Hughes, K.J., Ingham, D.B., et al., Process Simulation and Thermodynamic Analysis of a Micro Turbine with Post-Combustion CO2 Capture and Exhaust Gas Recirculation, Energy Procedia, 2014, vol. 63, pp. 986–996; https://doi.org/10.1016/j.egypro.2014.11.107.CrossRef Ali, U., Best, T., Finney, K.N., Palma, C.F., Hughes, K.J., Ingham, D.B., et al., Process Simulation and Thermodynamic Analysis of a Micro Turbine with Post-Combustion CO2 Capture and Exhaust Gas Recirculation, Energy Procedia, 2014, vol. 63, pp. 986–996; https://​doi.​org/​10.​1016/​j.​egypro.​2014.​11.​107.​CrossRef
38.
Zurück zum Zitat De Santis, A., Ingham, D.B., Ma, L., and Pourkashanian, M., CFD Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture, Fuel, 2016, vol. 173, pp. 146–154; https://doi.org/10.1016/j.fuel.2016.01.063.CrossRef De Santis, A., Ingham, D.B., Ma, L., and Pourkashanian, M., CFD Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture, Fuel, 2016, vol. 173, pp. 146–154; https://​doi.​org/​10.​1016/​j.​fuel.​2016.​01.​063.​CrossRef
39.
Zurück zum Zitat Alcaráz-Calderon, A.M., González-Díaz, M.O., Mendez, Ä., González-Santaló, J.M., and González-Díaz, A., Natural Gas Combined Cycle with Exhaust Gas Recirculation and CO2 Capture at Part-Load Operation, J. Energy Inst., 2019, vol. 92, pp. 370–381; https://doi.org/10.1016/j.joei.2017.12.007.CrossRef Alcaráz-Calderon, A.M., González-Díaz, M.O., Mendez, Ä., González-Santaló, J.M., and González-Díaz, A., Natural Gas Combined Cycle with Exhaust Gas Recirculation and CO2 Capture at Part-Load Operation, J. Energy Inst., 2019, vol. 92, pp. 370–381; https://​doi.​org/​10.​1016/​j.​joei.​2017.​12.​007.​CrossRef
40.
Zurück zum Zitat Li, H., Ditaranto, M., and Berstad, D., Technologies for Increasing CO2 Concentration in Exhaust Gas from Natural Gas-Fired Power Production with Post-Combustion, Amine-Based CO2Capture, Energy, 2011, vol. 36, pp. 1124–1133; https://doi.org/10.1016/j.energy.2010.11.037.CrossRef Li, H., Ditaranto, M., and Berstad, D., Technologies for Increasing CO2 Concentration in Exhaust Gas from Natural Gas-Fired Power Production with Post-Combustion, Amine-Based CO2Capture, Energy, 2011, vol. 36, pp. 1124–1133; https://​doi.​org/​10.​1016/​j.​energy.​2010.​11.​037.​CrossRef
41.
Zurück zum Zitat Shepherd, P.J., Fundamentals of Thermodynamics, 2013; https://doi.org/10.1002/9781118516911.ch5. Shepherd, P.J., Fundamentals of Thermodynamics, 2013; https://​doi.​org/​10.​1002/​9781118516911.​ch5.​
42.
Zurück zum Zitat Singh, G., Singh, A.P., and Agarwal, A.K., Experimental Investigations of Combustion, Performance and Emission Characterization of Biodiesel Fuelled HCCI Engine Using External Mixture Formation Technique, Sust. Energy Technol. Assess., 2014, vol. 6, pp. 116–128; https://doi.org/10.1016/j.seta.2014.01.002.CrossRef Singh, G., Singh, A.P., and Agarwal, A.K., Experimental Investigations of Combustion, Performance and Emission Characterization of Biodiesel Fuelled HCCI Engine Using External Mixture Formation Technique, Sust. Energy Technol. Assess., 2014, vol. 6, pp. 116–128; https://​doi.​org/​10.​1016/​j.​seta.​2014.​01.​002.​CrossRef
43.
Zurück zum Zitat Jiménez-Espadafor, F.J., Torres, M., Velez, J.A., Carvajal, E., and Becerra, J.A., Experimental Analysis of Low Temperature Combustion Mode with Diesel and Biodiesel Fuels: A Method for Reducing NOx and Soot Emissions, Fuel Process Technol., 2012, vol. 103, pp. 57–63; https://doi.org/10.1016/j.fuproc.2011.11.014.CrossRef Jiménez-Espadafor, F.J., Torres, M., Velez, J.A., Carvajal, E., and Becerra, J.A., Experimental Analysis of Low Temperature Combustion Mode with Diesel and Biodiesel Fuels: A Method for Reducing NOx and Soot Emissions, Fuel Process Technol., 2012, vol. 103, pp. 57–63; https://​doi.​org/​10.​1016/​j.​fuproc.​2011.​11.​014.​CrossRef
44.
Zurück zum Zitat Yu, B., Kum, S.M., Lee, C.E., and Lee, S., Study on the Combustion Characteristics of a Premixed Combustion System with Exhaust Gas Recirculation, Energy, 2013, vol. 61, pp. 345–353; https://doi.org/10.1016/ j.energy.2013.08.057.CrossRef Yu, B., Kum, S.M., Lee, C.E., and Lee, S., Study on the Combustion Characteristics of a Premixed Combustion System with Exhaust Gas Recirculation, Energy, 2013, vol. 61, pp. 345–353; https://​doi.​org/​10.​1016/​ j.energy.2013.08.057.CrossRef
45.
Zurück zum Zitat Ali, U., Font-Palma, C., Akram, M., Agbonghae, E.O., Ingham, D.B., and Pourkashanian, M., Comparative Potential of Natural Gas, Coal and Biomass Fired Power Plant with Post-Combustion CO2 Capture and Compression, Int. J. Greenh Gas Control, 2017, vol. 63, pp. 184–193; https://doi.org/10.1016/ j.ijggc.2017.05.022.CrossRef Ali, U., Font-Palma, C., Akram, M., Agbonghae, E.O., Ingham, D.B., and Pourkashanian, M., Comparative Potential of Natural Gas, Coal and Biomass Fired Power Plant with Post-Combustion CO2 Capture and Compression, Int. J. Greenh Gas Control, 2017, vol. 63, pp. 184–193; https://​doi.​org/​10.​1016/​ j.ijggc.2017.05.022.CrossRef
46.
Zurück zum Zitat Gómez, M.A., Martín, R., Chapela, S., and Porteiro, J., Steady CFD Combustion Modeling for Biomass Boilers, Energy Convers. Manag., 2019, vol. 179, pp. 91–103.CrossRef Gómez, M.A., Martín, R., Chapela, S., and Porteiro, J., Steady CFD Combustion Modeling for Biomass Boilers, Energy Convers. Manag., 2019, vol. 179, pp. 91–103.CrossRef
47.
Zurück zum Zitat Shinomori, K., Katou, K., Shimokuri, D., and Ishizuka, S., NOx Emission Characteristics and Aerodynamic Structure of a Self-Recirculation Type Burner for Small Boilers, Proc. Combust. Inst., 2011, vol. 33, pp. 2735–2742; https://doi.org/10.1016/j.proci.2010.06.093.CrossRef Shinomori, K., Katou, K., Shimokuri, D., and Ishizuka, S., NOx Emission Characteristics and Aerodynamic Structure of a Self-Recirculation Type Burner for Small Boilers, Proc. Combust. Inst., 2011, vol. 33, pp. 2735–2742; https://​doi.​org/​10.​1016/​j.​proci.​2010.​06.​093.​CrossRef
48.
Zurück zum Zitat Henriques, M. da C.B.F., Effect of Exhaust Gas Recirculation and Air Staging on Gaseous and Particle Emissions in a Domestic Boiler, 2018. Henriques, M. da C.B.F., Effect of Exhaust Gas Recirculation and Air Staging on Gaseous and Particle Emissions in a Domestic Boiler, 2018.
49.
Zurück zum Zitat Houshfar, E., Skreiberg, Ø., Todorović, D., Skreiberg, A., Løvås, T., Jovović, A., et al.. NOx Emission Reduction by Staged Combustion in Grate Combustion of Biomass Fuels and Fuel Mixtures, Fuel, 2012, vol. 98, pp. 29–40.CrossRef Houshfar, E., Skreiberg, Ø., Todorović, D., Skreiberg, A., Løvås, T., Jovović, A., et al.. NOx Emission Reduction by Staged Combustion in Grate Combustion of Biomass Fuels and Fuel Mixtures, Fuel, 2012, vol. 98, pp. 29–40.CrossRef
50.
Zurück zum Zitat Vaccarelli, M., Carapellucci, R., and Giordano, L., The Use of Biomass to Reduce Power Derating in Combined Cycle Power Plants Retrofitted with Post-Combustion CO2 Capture, 27th Int. Conf. Effic. Cost, Optim. Simul. Environ Impact Energy Syst. ECOS 2014, 2014. Vaccarelli, M., Carapellucci, R., and Giordano, L., The Use of Biomass to Reduce Power Derating in Combined Cycle Power Plants Retrofitted with Post-Combustion CO2 Capture, 27th Int. Conf. Effic. Cost, Optim. Simul. Environ Impact Energy Syst. ECOS 2014, 2014.
51.
Zurück zum Zitat Li, H., Haugen, G., Ditaranto, M., Berstad, D., and Jordal, K., Impacts of Exhaust Gas Recirculation (EGR) on the Natural Gas Combined Cycle Integrated with Chemical Absorption CO2 Capture Technology, Energy Procedia, 2011, vol. 4, pp. 1411–1418; https://doi.org/10.1016/j.egypro.2011.02.006.CrossRef Li, H., Haugen, G., Ditaranto, M., Berstad, D., and Jordal, K., Impacts of Exhaust Gas Recirculation (EGR) on the Natural Gas Combined Cycle Integrated with Chemical Absorption CO2 Capture Technology, Energy Procedia, 2011, vol. 4, pp. 1411–1418; https://​doi.​org/​10.​1016/​j.​egypro.​2011.​02.​006.​CrossRef
52.
Zurück zum Zitat Ditaranto, M., Hals, J., Bjørge, T., Investigation on the In-Flame NO Reburning in Turbine Exhaust Gas, Proc. Combust. Inst., 2009, vol. 32 II, pp. 2659–2666; https://doi.org/10.1016/j.proci.2008.07.002.CrossRef Ditaranto, M., Hals, J., Bjørge, T., Investigation on the In-Flame NO Reburning in Turbine Exhaust Gas, Proc. Combust. Inst., 2009, vol. 32 II, pp. 2659–2666; https://​doi.​org/​10.​1016/​j.​proci.​2008.​07.​002.​CrossRef
53.
Zurück zum Zitat ElKady, A.M., Evulet, A., Brand, A., Ursin, T.P., and Lynghjem, A., Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture, J. Eng. Gas Turbines Power, 2009, p. 131; https://doi.org/10.1115/1.2982158. ElKady, A.M., Evulet, A., Brand, A., Ursin, T.P., and Lynghjem, A., Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture, J. Eng. Gas Turbines Power, 2009, p. 131; https://​doi.​org/​10.​1115/​1.​2982158.​
54.
Zurück zum Zitat Hu, Y., Xu, G., Xu, C., and Yang, Y., Thermodynamic Analysis and Techno-Economic Evaluation of an Integrated Natural Gas Combined Cycle (NGCC) Power Plant with Post-Combustion CO2 Capture, Appl. Therm. Eng., 2017, vol. 111, pp. 308–316; https://doi.org/10.1016/j.applthermaleng.2016.09.094.ADSCrossRef Hu, Y., Xu, G., Xu, C., and Yang, Y., Thermodynamic Analysis and Techno-Economic Evaluation of an Integrated Natural Gas Combined Cycle (NGCC) Power Plant with Post-Combustion CO2 Capture, Appl. Therm. Eng., 2017, vol. 111, pp. 308–316; https://​doi.​org/​10.​1016/​j.​applthermaleng.​2016.​09.​094.​ADSCrossRef
55.
Zurück zum Zitat Lindqvist, K., Jordal, K., Haugen, G., Hoff, K.A., and Anantharaman, R., Integration Aspects of Reactive Absorption for Post-Combustion CO2 Capture From NGCC, Energy, 2014, vol. 78, pp. 758–767.CrossRef Lindqvist, K., Jordal, K., Haugen, G., Hoff, K.A., and Anantharaman, R., Integration Aspects of Reactive Absorption for Post-Combustion CO2 Capture From NGCC, Energy, 2014, vol. 78, pp. 758–767.CrossRef
56.
Zurück zum Zitat Ali, U., Agbonghae, E.O., Hughes, K.J., Ingham, D.B., Ma, L., and Pourkashanian, M., Techno-Economic Process Design of a Commercial-Scale Amine-Based CO2 Capture System for Natural Gas Combined Cycle Power Plant with Exhaust Gas Recirculation, Appl. Therm. Eng., 2016, vol. 103, pp. 747–758; https://doi.org/10.1016/j.applthermaleng.2016.04.145.CrossRef Ali, U., Agbonghae, E.O., Hughes, K.J., Ingham, D.B., Ma, L., and Pourkashanian, M., Techno-Economic Process Design of a Commercial-Scale Amine-Based CO2 Capture System for Natural Gas Combined Cycle Power Plant with Exhaust Gas Recirculation, Appl. Therm. Eng., 2016, vol. 103, pp. 747–758; https://​doi.​org/​10.​1016/​j.​applthermaleng.​2016.​04.​145.​CrossRef
57.
Zurück zum Zitat Røkke, P.E., Environmental Use of Natural Gas in a Gas Turbine, Norwegian University of Science and Technology, 2006. Røkke, P.E., Environmental Use of Natural Gas in a Gas Turbine, Norwegian University of Science and Technology, 2006.
58.
Zurück zum Zitat Peeters, A.N.M., Faaij, A.P.C., and Turkenburg, W.C., Techno-Economic Analysis of Natural Gas Combined Cycles with Post-Combustion CO2 Absorption, Including a dEtailed Evaluation of the Development Potential, Int. J. Greenh Gas Control, 2007, vol. 1, pp. 396–417; https://doi.org/10.1016/S1750-5836(07)00068-0.CrossRef Peeters, A.N.M., Faaij, A.P.C., and Turkenburg, W.C., Techno-Economic Analysis of Natural Gas Combined Cycles with Post-Combustion CO2 Absorption, Including a dEtailed Evaluation of the Development Potential, Int. J. Greenh Gas Control, 2007, vol. 1, pp. 396–417; https://​doi.​org/​10.​1016/​S1750-5836(07)00068-0.CrossRef
59.
Zurück zum Zitat Smith, L.D. and Sanchez, S., Assessment of Business Potential at Retail Sites: Empirical Findings from a US Supermarket Chain, Int. Rev. Retail Distrib. Consum. Res., 2003, vol. 13, pp. 37–58; https://doi.org/10.1080/0959396032000051684.CrossRef Smith, L.D. and Sanchez, S., Assessment of Business Potential at Retail Sites: Empirical Findings from a US Supermarket Chain, Int. Rev. Retail Distrib. Consum. Res., 2003, vol. 13, pp. 37–58; https://​doi.​org/​10.​1080/​0959396032000051​684.​CrossRef
60.
Zurück zum Zitat Smith, J.M., Van Ness, H.C., and Abbott, M.M., Introdução à Termodinâmica da Engenharia Química, 7th ed., LTC, Amsterdam. Smith, J.M., Van Ness, H.C., and Abbott, M.M., Introdução à Termodinâmica da Engenharia Química, 7th ed., LTC, Amsterdam.
61.
Zurück zum Zitat Trevelim, W.J., Caldeiras Flamotubulares-Reconstituição de Prontuários, Rev. Eletrônica Da Fac Alta Floresta, 2013, vol. 2, pp. 1–31. Trevelim, W.J., Caldeiras Flamotubulares-Reconstituição de Prontuários, Rev. Eletrônica Da Fac Alta Floresta, 2013, vol. 2, pp. 1–31.
62.
Zurück zum Zitat Junga, R., Chudy, P., and Pospolita, J., Uncertainty Estimation of the Efficiency of Small-Scale Boilers, Meas. J. Int. Meas. Confed., 2017, vol. 97, pp. 186–194; https://doi.org/10.1016/ j.measurement.2016.11.011.ADSCrossRef Junga, R., Chudy, P., and Pospolita, J., Uncertainty Estimation of the Efficiency of Small-Scale Boilers, Meas. J. Int. Meas. Confed., 2017, vol. 97, pp. 186–194; https://​doi.​org/​10.​1016/​ j.measurement.2016.11.011.ADSCrossRef
63.
Zurück zum Zitat Seitron, E., Combustion Analyzer Chemist 500x, Seitron, 2015. Seitron, E., Combustion Analyzer Chemist 500x, Seitron, 2015.
64.
Zurück zum Zitat Zhang, X., Chen, Q., Bradford, R., Sharifi, V., and Swithenbank, J.. Experimental Investigation and Mathematical Modelling of Wood Combustion in a Moving Grate Boiler, Fuel Process Technol., 2010, vol. 91, pp. 1491–1499; https://doi.org/10.1016/j.fuproc.2010.05.026.CrossRef Zhang, X., Chen, Q., Bradford, R., Sharifi, V., and Swithenbank, J.. Experimental Investigation and Mathematical Modelling of Wood Combustion in a Moving Grate Boiler, Fuel Process Technol., 2010, vol. 91, pp. 1491–1499; https://​doi.​org/​10.​1016/​j.​fuproc.​2010.​05.​026.​CrossRef
65.
Zurück zum Zitat Fernández, R.G., García, C.P., Lavín, A.G., and Bueno De Las Heras, J.L., Study of Main Combustion Characteristics for Biomass Fuels Used in Boilers, Fuel Process Technol., 2012, vol. 103, pp. 16–26; https://doi.org/10.1016/j.fuproc.2011.12.032.CrossRef Fernández, R.G., García, C.P., Lavín, A.G., and Bueno De Las Heras, J.L., Study of Main Combustion Characteristics for Biomass Fuels Used in Boilers, Fuel Process Technol., 2012, vol. 103, pp. 16–26; https://​doi.​org/​10.​1016/​j.​fuproc.​2011.​12.​032.​CrossRef
66.
Zurück zum Zitat Welter, C.A., Uso da Biomassa Florestal Como Estratégia de Redução dos Gases de Efeito Estufa: Estudo de Caso na Fumicultura do Sul do Brasil, Universidade Federal de Santa Maria, Santa Maria, 2017. Welter, C.A., Uso da Biomassa Florestal Como Estratégia de Redução dos Gases de Efeito Estufa: Estudo de Caso na Fumicultura do Sul do Brasil, Universidade Federal de Santa Maria, Santa Maria, 2017.
67.
Zurück zum Zitat Turns, S.R., Introduction to Combustion: Concepts and Plications, 3rd ed., New York: McGraw-Hill, 2013. Turns, S.R., Introduction to Combustion: Concepts and Plications, 3rd ed., New York: McGraw-Hill, 2013.
68.
Zurück zum Zitat Ruoso, A.C., Corrêa Bitencourt, L., Urach Sudati, L., Klunk, M.A., and Caetano, N.R., New Parameters for the Forest Biomass Waste Ecofirewood Manufacturing Process Optimization, Periódico Tchê Química, 2019, vol. 16, no. 32; DOI:10.52571/PTQ.v16.n32.2019.578_Periodico32_pgs_560_571 Ruoso, A.C., Corrêa Bitencourt, L., Urach Sudati, L., Klunk, M.A., and Caetano, N.R., New Parameters for the Forest Biomass Waste Ecofirewood Manufacturing Process Optimization, Periódico Tchê Química, 2019, vol. 16, no. 32; DOI:10.52571/PTQ.v16.n32.2019.578_Periodico32_pgs_560_571
69.
Zurück zum Zitat Li, X., Xu, Z., Guan, C., and Huang, Z., Impact of Exhaust Gas Recirculation (EGR) on Soot Reactivity from a Diesel Engine Operating at High Load, Appl. Therm. Eng., 2014, vol. 68, pp. 100–106; https://doi.org/10.1016/j.applthermaleng.2014.04.029.CrossRef Li, X., Xu, Z., Guan, C., and Huang, Z., Impact of Exhaust Gas Recirculation (EGR) on Soot Reactivity from a Diesel Engine Operating at High Load, Appl. Therm. Eng., 2014, vol. 68, pp. 100–106; https://​doi.​org/​10.​1016/​j.​applthermaleng.​2014.​04.​029.​CrossRef
70.
Zurück zum Zitat Rector, L., Miller, P.J., Snook, S., and Ahmadi, M., Comparative Emissions Characterization of a Small-Scale Wood Chip-Fired Boiler and an Oil-Fired Boiler in a School Setting, Biomass Bioenergy, 2017, vol. 107, pp. 254–260; https://doi.org/10.1016/j.biombioe.2017.10.017.CrossRef Rector, L., Miller, P.J., Snook, S., and Ahmadi, M., Comparative Emissions Characterization of a Small-Scale Wood Chip-Fired Boiler and an Oil-Fired Boiler in a School Setting, Biomass Bioenergy, 2017, vol. 107, pp. 254–260; https://​doi.​org/​10.​1016/​j.​biombioe.​2017.​10.​017.​CrossRef
71.
Zurück zum Zitat Caetano, N.R., Centeno, F.R., and Kyprianidis, K. Assessment of Thermal Radiation Heat Loss from Jet Diffusion Flames, Therm. Sci. Eng. Prog., 2018, vol. 7, pp. 241–247.CrossRef Caetano, N.R., Centeno, F.R., and Kyprianidis, K. Assessment of Thermal Radiation Heat Loss from Jet Diffusion Flames, Therm. Sci. Eng. Prog., 2018, vol. 7, pp. 241–247.CrossRef
72.
Zurück zum Zitat Caetano, N.R., Stapasolla, T.Z., Peng, F.B., Schneider, P.S., Pereira, F.M., and Vielmo, H.A., Diffusion Flame Stability of Low Calorific Fuels, Def. Diffus. Forum, 2015, vol. 362, pp. 29–37; https://doi.org/ 10.4028/www.scientific.net/DDF.362.29.CrossRef Caetano, N.R., Stapasolla, T.Z., Peng, F.B., Schneider, P.S., Pereira, F.M., and Vielmo, H.A., Diffusion Flame Stability of Low Calorific Fuels, Def. Diffus. Forum, 2015, vol. 362, pp. 29–37; https://​doi.​org/​ 10.4028/www.scientific.net/DDF.362.29.CrossRef
73.
Zurück zum Zitat Viskanta, R. and Mengüç, M.P., Radiation Heat Transfer in Combustion Systems, Prog. Energy Combust. Sci., 1987, vol. 13, pp. 97–160; https://doi.org/10.1016/0360-1285(87)90008-6.ADSCrossRef Viskanta, R. and Mengüç, M.P., Radiation Heat Transfer in Combustion Systems, Prog. Energy Combust. Sci., 1987, vol. 13, pp. 97–160; https://​doi.​org/​10.​1016/​0360-1285(87)90008-6.ADSCrossRef
74.
Zurück zum Zitat Caetano, N.R. and Figueira da Silva, L.F., A Comparative Experimental Study of Turbulent Non Premixed Flames Stabilized by a Bluff-Body Burner, Exp. Therm. Fluid Sci., 2015, vol. 63, pp. 20–33; https://doi.org/10.1016/j.expthermflusci.2015.01.006.CrossRef Caetano, N.R. and Figueira da Silva, L.F., A Comparative Experimental Study of Turbulent Non Premixed Flames Stabilized by a Bluff-Body Burner, Exp. Therm. Fluid Sci., 2015, vol. 63, pp. 20–33; https://​doi.​org/​10.​1016/​j.​expthermflusci.​2015.​01.​006.​CrossRef
75.
Zurück zum Zitat Kline, S. and McClintock, F., Describing Uncertainties in Single-Sample Experiments, Mech. Eng., 1953, vol. 75, pp. 3–8. Kline, S. and McClintock, F., Describing Uncertainties in Single-Sample Experiments, Mech. Eng., 1953, vol. 75, pp. 3–8.
76.
Zurück zum Zitat Moffat, R.J., Contributions to the Theory of Single-Sample Uncertainty Analysis, J. Fluids Eng., 1982, pp. 250–258. Moffat, R.J., Contributions to the Theory of Single-Sample Uncertainty Analysis, J. Fluids Eng., 1982, pp. 250–258.
77.
Zurück zum Zitat Bradley, D. and Matthews, K.J., Measurement of High Gas Temperatures with Fine Wire Thermocouples, J. Mech. Eng. Sci., 1968, vol. 10, pp. 299–305; https://doi.org/10.1243/jmes_jour_1968_010_048_02.CrossRef Bradley, D. and Matthews, K.J., Measurement of High Gas Temperatures with Fine Wire Thermocouples, J. Mech. Eng. Sci., 1968, vol. 10, pp. 299–305; https://​doi.​org/​10.​1243/​jmes_​jour_​1968_​010_​048_​02.​CrossRef
78.
Zurück zum Zitat Corporation, F., Fluke Corporation, LIF, Göttingen, Alemanha, Man Fluke 561, 2007. Corporation, F., Fluke Corporation, LIF, Göttingen, Alemanha, Man Fluke 561, 2007.
79.
Zurück zum Zitat Walekhwa, P.N., Lars, D., and Mugisha, J., Economic Viability of Biogas Energy Production from Family-Sized Digesters in Uganda, Biomass Bioenergy, 2014, vol. 70, pp. 26–39; https://doi.org/10.1016/ j.biombioe.2014.03.008.CrossRef Walekhwa, P.N., Lars, D., and Mugisha, J., Economic Viability of Biogas Energy Production from Family-Sized Digesters in Uganda, Biomass Bioenergy, 2014, vol. 70, pp. 26–39; https://​doi.​org/​10.​1016/​ j.biombioe.2014.03.008.CrossRef
80.
Zurück zum Zitat Newnan, D.G., Lavelle, J.P., and Eschenbach, T., Engineering Economic Analysis, 13th ed., New York, NY: Oxford University Press, 2017; https://doi.org/10.1201/b18364-5. Newnan, D.G., Lavelle, J.P., and Eschenbach, T., Engineering Economic Analysis, 13th ed., New York, NY: Oxford University Press, 2017; https://​doi.​org/​10.​1201/​b18364-5.​
81.
Zurück zum Zitat Song, S., Liu, P., Xu, J., Chong, C., Huang, X., Ma, L., et al., Life Cycle Assessment and Economic Evaluation of Pellet Fuel from Corn Straw in China: A Case Study in Jilin Province, Energy, 2017, vol. 130, pp. 373–381; https://doi.org/10.1016/j.energy.2017.04.068.CrossRef Song, S., Liu, P., Xu, J., Chong, C., Huang, X., Ma, L., et al., Life Cycle Assessment and Economic Evaluation of Pellet Fuel from Corn Straw in China: A Case Study in Jilin Province, Energy, 2017, vol. 130, pp. 373–381; https://​doi.​org/​10.​1016/​j.​energy.​2017.​04.​068.​CrossRef
82.
Zurück zum Zitat Gajja, B.L., Chand, K., Singh, B., Mertia, R.S., and Kumar, S., Application of Modified Internal Rate of Return Method for Watershed Evaluation, Agric. Econ. Res. Rev., 2009, p. 22; https://doi.org/10.5958/j.0974-0279.27.1.013. Gajja, B.L., Chand, K., Singh, B., Mertia, R.S., and Kumar, S., Application of Modified Internal Rate of Return Method for Watershed Evaluation, Agric. Econ. Res. Rev., 2009, p. 22; https://​doi.​org/​10.​5958/​j.​0974-0279.​27.​1.​013.​
83.
Zurück zum Zitat Dudkiewicz, E. and Szałański, P., Overview of Exhaust Gas Heat Recovery Technologies for Radiant Heating Systems in Large Halls, Therm. Sci. Eng. Prog., 2020, vol. 18, p. 100522; https://doi.org/https:// doi.org/10.1016/j.tsep.2020.100522.CrossRef Dudkiewicz, E. and Szałański, P., Overview of Exhaust Gas Heat Recovery Technologies for Radiant Heating Systems in Large Halls, Therm. Sci. Eng. Prog., 2020, vol. 18, p. 100522; https://​doi.​org/​https:// doi.org/10.1016/j.tsep.2020.100522.CrossRef
84.
Zurück zum Zitat Coelho, P. and Costa, M., Combustão, 1st ed., Portugal: Orion, 2007. Coelho, P. and Costa, M., Combustão, 1st ed., Portugal: Orion, 2007.
85.
Zurück zum Zitat Pedley, T.J., Introduction to Fluid Dynamics, Sci. Mar., 1997, vol. 61, pp. 7–24; https://doi.org/10.2307/ j.ctvc77ddr.12. Pedley, T.J., Introduction to Fluid Dynamics, Sci. Mar., 1997, vol. 61, pp. 7–24; https://​doi.​org/​10.​2307/​ j.ctvc77ddr.12.
86.
Zurück zum Zitat Leonardo, M.P., Duto Semi-Flexivel Alumi Para Coifa De 150 Mm (rl.c/1.5 mts), Merc Livre, 2017. Leonardo, M.P., Duto Semi-Flexivel Alumi Para Coifa De 150 Mm (rl.c/1.5 mts), Merc Livre, 2017.
87.
Zurück zum Zitat Fdolinski, C., Trocador de Calor de 30 Placas em Inox, Merc Livre, 2017. Fdolinski, C., Trocador de Calor de 30 Placas em Inox, Merc Livre, 2017.
88.
Zurück zum Zitat BCB, Selic-Banco Central do Brasil, GovBr, 2017. BCB, Selic-Banco Central do Brasil, GovBr, 2017.
Metadaten
Titel
Energy Recovery Based on Exhaust Gas Recirculation and Heat Regeneration Processes Applied in a Firewood Boiler
verfasst von
N. R. Caetano
B. P. da Silva
A. C. Ruoso
A. G. Avila
L. A. O. Rocha
G. Lorenzini
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823030062

Weitere Artikel der Ausgabe 3/2023

Journal of Engineering Thermophysics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.