Skip to main content
Top
Published in: International Journal of Material Forming 5/2021

23-03-2021 | Original Research

Experimental and numerical investigation of the generated heat in polypropylene sheet joints using friction stir welding (FSW)

Authors: Reza Mirabzadeh, Vali Parvaneh, Amir Ehsani

Published in: International Journal of Material Forming | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we aim to investigate the heat generated during friction stir lap welding in polypropylene sheets. In this method, the generated heat significantly depends on the tool’s rotational and linear speed, geometry, and tilt angle. Heat analysis and measurement during welding are performed numerically to validate the experimental results. A 3-D symmetric Finite Element (FE) model was created to estimate the generated and distributed heat. As is shown, the heat is mainly generated around and underside the tool due to the high friction between the rotating tool and the workpiece. This paper provided a good intuition on the generated and distributed heat during the FSW process, which can be considered a reference to produce optimum and high-quality products with fewer tests. Therefore, in this paper, the effect of a number of parameters on the generated heat during the welding process is studied experimentally and statistically and simulated in three different levels. The obtained results demonstrated a significant relationship between the properties and process parameters using analysis of variance (ANOVA) and response surface method (RSM) (Box-Behnken). Moreover, the results revealed that the effect of parameter interactions could be evaluated using the proposed mathematical model by analyzing the presented plots. In addition, the results from the simulated model using finite element software and Altair’s HyperWorks confirmed the mathematical model estimations and the experimental results. The created model can successfully predict 92% of the welding joint temperature using the conditions and materials proposed in this paper. The results of the simulation analysis were validated and compared with the experimental tests, indicating a temperature difference of approximately 6%. The most effective parameter in heat generation is the rotational speed of the tool, which is responsible for up to 70% of the overall heat. Tool’s geometry (15%), traveling speed (11%), and tilt angle (4%) are the other parameters effective in generating heat in the process, in respective order.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oliveira PH, Amancio ST, Dos Santos JF et al (2010) Preliminary study on the feasibility of friction spot welding in PMMA. J Mater Lett 64(19):2098–2101CrossRef Oliveira PH, Amancio ST, Dos Santos JF et al (2010) Preliminary study on the feasibility of friction spot welding in PMMA. J Mater Lett 64(19):2098–2101CrossRef
2.
go back to reference Yousefpour A, Hojjati M, Immarigeon JP (2004) Fusion bonding/welding of thermoplastic composites. J Thermoplast Compos Mater 17(4):303–341CrossRef Yousefpour A, Hojjati M, Immarigeon JP (2004) Fusion bonding/welding of thermoplastic composites. J Thermoplast Compos Mater 17(4):303–341CrossRef
3.
go back to reference Huang Y, Meng X, Xie Y, Wan L, Lv Z, Cao J, Feng J (2018) Friction stir welding/ processing of polymers and polymer matrix composites. Compos A: J Appl Sci Manuf 105:235–257CrossRef Huang Y, Meng X, Xie Y, Wan L, Lv Z, Cao J, Feng J (2018) Friction stir welding/ processing of polymers and polymer matrix composites. Compos A: J Appl Sci Manuf 105:235–257CrossRef
4.
go back to reference Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023CrossRef Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023CrossRef
5.
go back to reference Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng 50:1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng 50:1–78CrossRef
6.
go back to reference Huang Y, Meng X, Xie Y, Lv Z, Wan L, Cao J, Feng J (2018) Friction spot welding of carbon fiber-reinforced polyetherimide laminate. Compos Struct 189:627–634CrossRef Huang Y, Meng X, Xie Y, Lv Z, Wan L, Cao J, Feng J (2018) Friction spot welding of carbon fiber-reinforced polyetherimide laminate. Compos Struct 189:627–634CrossRef
8.
go back to reference Aghajani Derazkola H, Elyasi M (2018) The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate. J Manuf Process 35:88–98CrossRef Aghajani Derazkola H, Elyasi M (2018) The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate. J Manuf Process 35:88–98CrossRef
9.
go back to reference Meng X, Huang Y, Cao J et al (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci 115:1–74CrossRef Meng X, Huang Y, Cao J et al (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci 115:1–74CrossRef
10.
go back to reference Arici A, Selale S (2007) Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. J Sci Technol Weld Join 12(6):536–539CrossRef Arici A, Selale S (2007) Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. J Sci Technol Weld Join 12(6):536–539CrossRef
11.
go back to reference Payganeh GH, Arab NBM, Asl YD et al (2011) Effects of friction stir welding process parameters on appearance and strength ofpolypropylene composite welds. Int J Phys Sci 6:4595–4601 Payganeh GH, Arab NBM, Asl YD et al (2011) Effects of friction stir welding process parameters on appearance and strength ofpolypropylene composite welds. Int J Phys Sci 6:4595–4601
12.
go back to reference Shazly M, El-raey M (2014) Friction stir welding of polycarbonate sheets. In: Carpenter JS, Bai C, Hwang J-Y, Ikhmayies S, Li B, Monteiro SN, Peng Z, Zhang M (eds) Charaterization of minerals, metals and materials. Wiley, Hoboken, pp 555–563 Shazly M, El-raey M (2014) Friction stir welding of polycarbonate sheets. In: Carpenter JS, Bai C, Hwang J-Y, Ikhmayies S, Li B, Monteiro SN, Peng Z, Zhang M (eds) Charaterization of minerals, metals and materials. Wiley, Hoboken, pp 555–563
13.
go back to reference Threadgill PL, Leonard AJ, Shercliff HR et al (2013) Friction stir welding of aluminium alloys. Int J Mater Rev 54:49–93CrossRef Threadgill PL, Leonard AJ, Shercliff HR et al (2013) Friction stir welding of aluminium alloys. Int J Mater Rev 54:49–93CrossRef
14.
go back to reference Aydin M (2010) Effects of welding parameters and preheating on the friction stir welding of UHMW-polyethylene. J Polym Plast Technol Eng 49(6):595–601CrossRef Aydin M (2010) Effects of welding parameters and preheating on the friction stir welding of UHMW-polyethylene. J Polym Plast Technol Eng 49(6):595–601CrossRef
15.
go back to reference Squeo E, Bruno G, Guglielmotti A, Quadrini F (2009) Friction stir welding of polyethylene sheets. The Annals of Dunarea De Jos University of Galati, Fascicle V, Technologies in Machine Building, ISSN: 1221–4566: 241–246 Squeo E, Bruno G, Guglielmotti A, Quadrini F (2009) Friction stir welding of polyethylene sheets. The Annals of Dunarea De Jos University of Galati, Fascicle V, Technologies in Machine Building, ISSN: 1221–4566: 241–246
16.
go back to reference Panneerselvam K, Lenin K (2013) Effects and defects of the polypropylene plate for different parameters in friction stir welding process. Int J Res Eng Technol 2:143–152CrossRef Panneerselvam K, Lenin K (2013) Effects and defects of the polypropylene plate for different parameters in friction stir welding process. Int J Res Eng Technol 2:143–152CrossRef
17.
go back to reference Arici A, Sinmaz T (2005) Effects of double passes of the tool on friction stir welding of polyethylene. J Mater Sci 40(12):3313–3316CrossRef Arici A, Sinmaz T (2005) Effects of double passes of the tool on friction stir welding of polyethylene. J Mater Sci 40(12):3313–3316CrossRef
18.
go back to reference Roth A, Hake T, Zaeh MF (2014) An analytical approach of modelling friction stir welding. Procedia CIRP 18:197–202CrossRef Roth A, Hake T, Zaeh MF (2014) An analytical approach of modelling friction stir welding. Procedia CIRP 18:197–202CrossRef
19.
go back to reference Zhang Z, Zhang HW (2008) A fully coupled thermo-mechanical model of friction stir welding. Int J Adv Manuf Technol 37(3–4):279–293CrossRef Zhang Z, Zhang HW (2008) A fully coupled thermo-mechanical model of friction stir welding. Int J Adv Manuf Technol 37(3–4):279–293CrossRef
20.
go back to reference Li H, Liu D (2014) Simplified thermo-mechanical modeling of friction stir welding with a sequential FE method. Int J Model Optim 4(5):410–416CrossRef Li H, Liu D (2014) Simplified thermo-mechanical modeling of friction stir welding with a sequential FE method. Int J Model Optim 4(5):410–416CrossRef
21.
go back to reference Mauricio, Pedro (2009) Modeling temperature distribution in friction stir welding using the finite element method. 20th international congress of mechanical engineering, November 15–20 Mauricio, Pedro (2009) Modeling temperature distribution in friction stir welding using the finite element method. 20th international congress of mechanical engineering, November 15–20
22.
go back to reference Salloomi KN et al (2013) 3-dimensional nonlinear finite element analysis of both thermal and mechanical response of friction stir welded 2024-T3 aluminium plates. J Inf Eng Appl 3(9):6–15 Salloomi KN et al (2013) 3-dimensional nonlinear finite element analysis of both thermal and mechanical response of friction stir welded 2024-T3 aluminium plates. J Inf Eng Appl 3(9):6–15
23.
go back to reference Abdul Arif, et al. (2013) Finite element modelling for validation of maximum temperature in friction stir welding of aluminium alloy. 3rd international conference on production and industrial engineering, CPIE, at NIT, Jalandhar, Punjab Abdul Arif, et al. (2013) Finite element modelling for validation of maximum temperature in friction stir welding of aluminium alloy. 3rd international conference on production and industrial engineering, CPIE, at NIT, Jalandhar, Punjab
24.
go back to reference Huang Y, Xie Y, Meng X, Lv Z, Cao J (2018) Numerical design of high depth-to-width ratio friction stir welding. J Mater Process Technol 252:233–241CrossRef Huang Y, Xie Y, Meng X, Lv Z, Cao J (2018) Numerical design of high depth-to-width ratio friction stir welding. J Mater Process Technol 252:233–241CrossRef
25.
go back to reference Armansyah et al (2014) Temperature distribution in friction stir welding using finite element method. World Acad Sci, Eng Technol, Int J Mech, Aerosp, Ind Mechatronics Eng 8(10):1699–1704 Armansyah et al (2014) Temperature distribution in friction stir welding using finite element method. World Acad Sci, Eng Technol, Int J Mech, Aerosp, Ind Mechatronics Eng 8(10):1699–1704
26.
go back to reference Kıral BG et al (2013) Finite element modeling of friction stir welding in aluminum alloys joint. Math Comput Appl 18(2):122–131MATH Kıral BG et al (2013) Finite element modeling of friction stir welding in aluminum alloys joint. Math Comput Appl 18(2):122–131MATH
27.
go back to reference Zhang Z, Zhang HW (2009) Numerical studies on the effect of transverse speed in friction stir welding. Mater Des 30(3):900–907CrossRef Zhang Z, Zhang HW (2009) Numerical studies on the effect of transverse speed in friction stir welding. Mater Des 30(3):900–907CrossRef
28.
go back to reference Prasanna P et al (2010) Finite element modeling for maximum temperature in friction stir welding and its validation. Int J Adv Manuf Technol 51(9–12):925–933CrossRef Prasanna P et al (2010) Finite element modeling for maximum temperature in friction stir welding and its validation. Int J Adv Manuf Technol 51(9–12):925–933CrossRef
29.
go back to reference Hasanzadeh R, Azdast T, Doniavia A, Lee RE (2019) Multi-objective optimization of heat transfer mechanisms of microcellular polymeric foams from thermal-insulation point of view. Therm Sci Eng Prog 9:21–29CrossRef Hasanzadeh R, Azdast T, Doniavia A, Lee RE (2019) Multi-objective optimization of heat transfer mechanisms of microcellular polymeric foams from thermal-insulation point of view. Therm Sci Eng Prog 9:21–29CrossRef
30.
go back to reference Azdast T, Hasanzadeh R, Moradian M (2017) Optimization of process parameters in FSW of polymeric nanocomposites to improve impact strength using step wise tool selection. Mater Manuf Process 33(3):343–349CrossRef Azdast T, Hasanzadeh R, Moradian M (2017) Optimization of process parameters in FSW of polymeric nanocomposites to improve impact strength using step wise tool selection. Mater Manuf Process 33(3):343–349CrossRef
31.
go back to reference Mosavvar A, Azdast T, Moradian M, Hasanzadeh R (2019) Tensile properties of friction stir welding of thermoplastic pipes based on a novel designed mechanism. Weld World 63(3):691–699CrossRef Mosavvar A, Azdast T, Moradian M, Hasanzadeh R (2019) Tensile properties of friction stir welding of thermoplastic pipes based on a novel designed mechanism. Weld World 63(3):691–699CrossRef
32.
go back to reference Azdast T, Hasanzadeh R (2019) Experimental assessment and optimization of shrinkage behavior of injection molded polycarbonate parts. Mater Res Express 6(11):115334CrossRef Azdast T, Hasanzadeh R (2019) Experimental assessment and optimization of shrinkage behavior of injection molded polycarbonate parts. Mater Res Express 6(11):115334CrossRef
33.
go back to reference Hasanzadeh R, Azdast T, Doniavi A, Rostami M (2019) A prediction model using response surface methodology based on cell size and foam density to predict thermal conductivity of polystyrene foams. Heat Mass Transf 55(10):2845–2855CrossRef Hasanzadeh R, Azdast T, Doniavi A, Rostami M (2019) A prediction model using response surface methodology based on cell size and foam density to predict thermal conductivity of polystyrene foams. Heat Mass Transf 55(10):2845–2855CrossRef
34.
go back to reference Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. J Mater Des 64:81–90CrossRef Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. J Mater Des 64:81–90CrossRef
35.
go back to reference Azarsa E, Mostafapour A (2014) Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J Manuf Process 16(1):149–155CrossRef Azarsa E, Mostafapour A (2014) Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J Manuf Process 16(1):149–155CrossRef
36.
go back to reference Rahbarpour R, Azdast T, Rahbarpour H, Shishavan SM (2014) Feasibility study of friction stir welding of wood–plastic composites. J Sci Technol Weld Join 19(8):673–681CrossRef Rahbarpour R, Azdast T, Rahbarpour H, Shishavan SM (2014) Feasibility study of friction stir welding of wood–plastic composites. J Sci Technol Weld Join 19(8):673–681CrossRef
37.
go back to reference Mostafapour A, Asad FT (2016) Investigations on joining of nylon 6 plates via novel method of heat assisted friction stir welding to find the optimum process parameters. J Sci Technol Weld Join 21(8):660–669CrossRef Mostafapour A, Asad FT (2016) Investigations on joining of nylon 6 plates via novel method of heat assisted friction stir welding to find the optimum process parameters. J Sci Technol Weld Join 21(8):660–669CrossRef
38.
go back to reference Bagheri A, Azdast T, Doniavi A (2013) An experimental study on mechanical properties of friction stir welded ABS sheets. J Mater Des 43:402–409CrossRef Bagheri A, Azdast T, Doniavi A (2013) An experimental study on mechanical properties of friction stir welded ABS sheets. J Mater Des 43:402–409CrossRef
39.
go back to reference Sajed M, Bisadi H (2016) Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys. J Weld World 60(1):33–40CrossRef Sajed M, Bisadi H (2016) Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys. J Weld World 60(1):33–40CrossRef
40.
go back to reference Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49(11):814–823CrossRef Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49(11):814–823CrossRef
41.
go back to reference Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. J Technometrics 2(4):455–475MathSciNetCrossRef Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. J Technometrics 2(4):455–475MathSciNetCrossRef
42.
go back to reference Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. J Anal Chim Acta 597(2):179–186CrossRef Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. J Anal Chim Acta 597(2):179–186CrossRef
43.
go back to reference Kamarei F, Ebrahimzadeh H, Yamini Y (2010) Optimization of solvent bar micro extraction combined with gas chromatography for the analysis of aliphatic amines in water samples. J Hazard Mater 178(1–3):747–752CrossRef Kamarei F, Ebrahimzadeh H, Yamini Y (2010) Optimization of solvent bar micro extraction combined with gas chromatography for the analysis of aliphatic amines in water samples. J Hazard Mater 178(1–3):747–752CrossRef
44.
go back to reference Karthikeyan R, Balasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int J Adv Manuf Technol 51(1–4):173–1830CrossRef Karthikeyan R, Balasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int J Adv Manuf Technol 51(1–4):173–1830CrossRef
45.
go back to reference Khuri AL, Cornell J (1996) Response surfaces: design and analysis, 2nd edn. Marcel Dekker, New YorkMATH Khuri AL, Cornell J (1996) Response surfaces: design and analysis, 2nd edn. Marcel Dekker, New YorkMATH
46.
go back to reference Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174CrossRef Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174CrossRef
47.
go back to reference Woo W, Balogh L, Ungár T, Choo H, Feng Z (2008) Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis. Mater Sci Eng A 498(1–2):308–313CrossRef Woo W, Balogh L, Ungár T, Choo H, Feng Z (2008) Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis. Mater Sci Eng A 498(1–2):308–313CrossRef
48.
go back to reference Nandan R, Roy G, Lienert T, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895CrossRef Nandan R, Roy G, Lienert T, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895CrossRef
49.
go back to reference Ansari MA, Samanta A, Behnagh RA, Ding H (2019) An efficient coupled Eulerian-Lagrangian finite element model for friction stir processing. Int J Manuf Technol 101(5–8):1495–1508CrossRef Ansari MA, Samanta A, Behnagh RA, Ding H (2019) An efficient coupled Eulerian-Lagrangian finite element model for friction stir processing. Int J Manuf Technol 101(5–8):1495–1508CrossRef
50.
go back to reference Eskandari M, Aval HJ, Jamaati R (2019) The study of thermomechanical and microstructural issues in dissimilar FSW of AA6061 wrought and A390 cast alloys. J Manuf Process 4:168–176CrossRef Eskandari M, Aval HJ, Jamaati R (2019) The study of thermomechanical and microstructural issues in dissimilar FSW of AA6061 wrought and A390 cast alloys. J Manuf Process 4:168–176CrossRef
Metadata
Title
Experimental and numerical investigation of the generated heat in polypropylene sheet joints using friction stir welding (FSW)
Authors
Reza Mirabzadeh
Vali Parvaneh
Amir Ehsani
Publication date
23-03-2021
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 5/2021
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-021-01622-y

Other articles of this Issue 5/2021

International Journal of Material Forming 5/2021 Go to the issue

Premium Partners