Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

13-04-2018

Experimental Evaluation of Intelligent Transport System with VLC Vehicle-to-Vehicle Communication

Authors: Faisal Ahmed Dahri, Hyder Bux Mangrio, Attiya Baqai, Fahim Aziz Umrani

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Visible light communication (VLC) is suitable and natural candidate for vehicular communication. This paper presents the vehicle to vehicle communication system based on VLC technology utilizing light emitting diodes (LEDs) as a transmitter and photodiode as a receiver. The LEDs are present everywhere in outdoor and vehicles utilizing those for communication. Vehicular ad hoc networks are facilitated by empowering enormous applications to require both proficient and reliable data delivery. Low-latency, simple and cost-effective system is designed with less complexity and high consistency by employing off-the-shelf LEDs and photodiodes which mitigates the implementation of complex protocols of typical wireless communication systems. The signal is transmitted from one vehicle that will be received by another vehicle to make sensible steps and to maintain strategic distance to avoid accidents. In this paper, the performance analysis of VLC based vehicle to vehicle communication (V2V) is presented. The results show that 3.5 Mbps and 500 kbps of data rates have been achieved over the distance of 0.5 and 15 m respectively. Amplitude shift keying, frequency shift keying (FSK) and phase shift keying schemes are tested with non-return-zero coding scheme. Bit error rate, received optical power and received signal voltages are measured and analyzed in this paper for V2V communication. The FSK modulation is an efficient technique for long distance as it has lower losses compared to other techniques. Warning messages are displayed on liquid crystal display. The prototype is evaluated experimentally over the distance of 15 m using an array of LEDs to reduce the chances of accidents. Bit error rate of 10−11 for FSK modulation has been achieved with the signal to noise ratio value of 13 dB in this work. The results confirmed the performance of the proposed system and presented that VLC is a feasible technology for vehicular communication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference World Health Organization. (2013). Global status report on road safety: Supporting a decade of action. Geneva: World Health Organization. World Health Organization. (2013). Global status report on road safety: Supporting a decade of action. Geneva: World Health Organization.
2.
go back to reference World Health Organization. (2009). Global status report on road safety: Time for action. Geneva: World Health Organization. World Health Organization. (2009). Global status report on road safety: Time for action. Geneva: World Health Organization.
3.
go back to reference Rodrigue, J. P. (2013). Urban transport problems. In The geography of transport systems (3rd edn., pp. 212–219). New York: Routledge Rodrigue, J. P. (2013). Urban transport problems. In The geography of transport systems (3rd edn., pp. 212–219). New York: Routledge
4.
go back to reference Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.CrossRef Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.CrossRef
5.
go back to reference Tanaka, Y., Komine, T., Haruyama, S., & Nakagawa, M. (2003). Indoor visible light data transmission system utilizing white LED lights. IEICE Transactions on Communications, 86(8), 2440–2454. Tanaka, Y., Komine, T., Haruyama, S., & Nakagawa, M. (2003). Indoor visible light data transmission system utilizing white LED lights. IEICE Transactions on Communications, 86(8), 2440–2454.
6.
go back to reference Cahyadi, W. A., Kim, Y. H., Chung, Y. H., & Ghassemlooy, Z. (2015). Efficient road surface detection using visible light communication. In Seventh international conference on ubiquitous and future networks (ICUFN) (pp. 61–63). IEEE. Cahyadi, W. A., Kim, Y. H., Chung, Y. H., & Ghassemlooy, Z. (2015). Efficient road surface detection using visible light communication. In Seventh international conference on ubiquitous and future networks (ICUFN) (pp. 61–63). IEEE.
7.
go back to reference Kim, Y. H., Jeong, T. I., & Chung, Y. H. (2015). Rear-end collision and blind spot reduced autonomous vehicles using sensors and cameras. Sensor Letters, 13(8), 646–649.CrossRef Kim, Y. H., Jeong, T. I., & Chung, Y. H. (2015). Rear-end collision and blind spot reduced autonomous vehicles using sensors and cameras. Sensor Letters, 13(8), 646–649.CrossRef
8.
go back to reference Kim, D. R., Yang, S. H., Kim, H. S., Son, Y. H., & Han, S. K. (2012). Outdoor visible light communication for inter-vehicle communication using controller area network. In Fourth international conference on communications and electronics (ICCE) (pp. 31–34). IEEE. Kim, D. R., Yang, S. H., Kim, H. S., Son, Y. H., & Han, S. K. (2012). Outdoor visible light communication for inter-vehicle communication using controller area network. In Fourth international conference on communications and electronics (ICCE) (pp. 31–34). IEEE.
9.
go back to reference Morgan, Y. L. (2010). Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 12(4), 504–518.CrossRef Morgan, Y. L. (2010). Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 12(4), 504–518.CrossRef
10.
go back to reference Weidel, E. (2006). U.S. Patent No. 7,150,552. Washington, DC: U.S. Patent and Trademark Office. Weidel, E. (2006). U.S. Patent No. 7,150,552. Washington, DC: U.S. Patent and Trademark Office.
11.
go back to reference Pisek, E., Rajagopal, S., & Abu-Surra, S. (2012). Gigabit rate mobile connectivity through visible light communication. In International conference on communications (ICC) (pp. 3122–3127). IEEE. Pisek, E., Rajagopal, S., & Abu-Surra, S. (2012). Gigabit rate mobile connectivity through visible light communication. In International conference on communications (ICC) (pp. 3122–3127). IEEE.
12.
go back to reference Yu, S. H., Shih, O., Tsai, H. M., Wisitpongphan, N., & Roberts, R. D. (2013). Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12), 50–59.CrossRef Yu, S. H., Shih, O., Tsai, H. M., Wisitpongphan, N., & Roberts, R. D. (2013). Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12), 50–59.CrossRef
13.
go back to reference Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2014). Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7), 88–97.CrossRef Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2014). Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7), 88–97.CrossRef
14.
go back to reference Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., & Menouar, H. (2015). Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Vehicular Technology Magazine, 10(4), 45–53.CrossRef Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., & Menouar, H. (2015). Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Vehicular Technology Magazine, 10(4), 45–53.CrossRef
15.
go back to reference Ferraz, P. A. P., & Santos, I. S. (2015). Visible light communication applied on vehicle-to-vehicle networks. In International conference on mechatronics, electronics and automotive engineering (ICMEAE) (pp. 231–235). IEEE. Ferraz, P. A. P., & Santos, I. S. (2015). Visible light communication applied on vehicle-to-vehicle networks. In International conference on mechatronics, electronics and automotive engineering (ICMEAE) (pp. 231–235). IEEE.
16.
go back to reference Al Abdulsalam, N., Al Hajri, R., Al Abri, Z., Al Lawati, Z., & Bait-Suwailam, M. M. (2015). Design and implementation of a vehicle to vehicle communication system using Li-Fi technology. In International conference on information and communication technology research (ICTRC) (pp. 136–139). IEEE. Al Abdulsalam, N., Al Hajri, R., Al Abri, Z., Al Lawati, Z., & Bait-Suwailam, M. M. (2015). Design and implementation of a vehicle to vehicle communication system using Li-Fi technology. In International conference on information and communication technology research (ICTRC) (pp. 136–139). IEEE.
17.
go back to reference Khairi, D., & Berqia, A. (2015). Li-Fi the future of vehicular ad hoc networks. Transactions on Networks and Communications, 3(3), 31. Khairi, D., & Berqia, A. (2015). Li-Fi the future of vehicular ad hoc networks. Transactions on Networks and Communications, 3(3), 31.
18.
go back to reference Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 8th International symposium on communication systems networks & digital signal processing (CSNDSP) (pp. 1–6). Poznan. Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 8th International symposium on communication systems networks & digital signal processing (CSNDSP) (pp. 1–6). Poznan.
19.
go back to reference LAN/MAN Standards Committee of the IEEE Computer Society. (2010). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications Amendment 6: Wireless access in vehicular environments. In IEEE standards (Vol. 802, pp. 1–51). LAN/MAN Standards Committee of the IEEE Computer Society. (2010). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications Amendment 6: Wireless access in vehicular environments. In IEEE standards (Vol. 802, pp. 1–51).
20.
go back to reference Sasaki, N., Iijima, N., & Uchiyama, D. (2015). Development of ranging method for inter-vehicle distance using visible light communication and image processing. In 15th International conference on control, automation and systems (ICCAS) (pp. 666–670). IEEE. Sasaki, N., Iijima, N., & Uchiyama, D. (2015). Development of ranging method for inter-vehicle distance using visible light communication and image processing. In 15th International conference on control, automation and systems (ICCAS) (pp. 666–670). IEEE.
21.
go back to reference You, S. H., Chang, S. H., Lin, H. M., & Tsai, H. M. (2013). Visible light communications for scooter safety. In Proceeding of the 11th annual international conference on mobile systems, applications, and services (pp. 509–510). ACM. You, S. H., Chang, S. H., Lin, H. M., & Tsai, H. M. (2013). Visible light communications for scooter safety. In Proceeding of the 11th annual international conference on mobile systems, applications, and services (pp. 509–510). ACM.
22.
go back to reference Kim, Y. H., Cahyadi, W. A., & Chung, Y. H. (2015). Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics Journal, 7(6), 1–9.CrossRef Kim, Y. H., Cahyadi, W. A., & Chung, Y. H. (2015). Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics Journal, 7(6), 1–9.CrossRef
23.
go back to reference Cailean, A., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Blosseville, J. M. (2012). Visible light communications: Application to cooperation between vehicles and road infrastructures. In Intelligent vehicles symposium (IV) (pp. 1055–1059). IEEE. Cailean, A., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Blosseville, J. M. (2012). Visible light communications: Application to cooperation between vehicles and road infrastructures. In Intelligent vehicles symposium (IV) (pp. 1055–1059). IEEE.
24.
go back to reference Cailean, A. M., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Dimian, M. (2013). Visible light communications cooperative architecture for the intelligent transportation system. In 20th Symposium on communications and vehicular technology in the Benelux (SCVT) (pp. 1–5). IEEE. Cailean, A. M., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Dimian, M. (2013). Visible light communications cooperative architecture for the intelligent transportation system. In 20th Symposium on communications and vehicular technology in the Benelux (SCVT) (pp. 1–5). IEEE.
25.
go back to reference Yoo, J. H., Jang, J. S., Kwon, J. K., Kim, H. C., Song, D. W., & Jung, S. Y. (2016). Demonstration of vehicular visible light communication based on LED headlamp. International Journal of Automotive Technology, 17(2), 347–352.CrossRef Yoo, J. H., Jang, J. S., Kwon, J. K., Kim, H. C., Song, D. W., & Jung, S. Y. (2016). Demonstration of vehicular visible light communication based on LED headlamp. International Journal of Automotive Technology, 17(2), 347–352.CrossRef
26.
go back to reference Béchadergue, B., Chassagne, L., & Guan, H. (2017). Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Optics Express, 25(20), 24790–24802.CrossRef Béchadergue, B., Chassagne, L., & Guan, H. (2017). Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Optics Express, 25(20), 24790–24802.CrossRef
27.
go back to reference Prabhu, T. N., Adharsh, M., Ashok, K. M., Gokul, K. M., & Dhayanithi, G. (2017). Vehicle to vehicle communication using light fidelity. International Journal of Computer Applications, 164(2), 5–8.CrossRef Prabhu, T. N., Adharsh, M., Ashok, K. M., Gokul, K. M., & Dhayanithi, G. (2017). Vehicle to vehicle communication using light fidelity. International Journal of Computer Applications, 164(2), 5–8.CrossRef
Metadata
Title
Experimental Evaluation of Intelligent Transport System with VLC Vehicle-to-Vehicle Communication
Authors
Faisal Ahmed Dahri
Hyder Bux Mangrio
Attiya Baqai
Fahim Aziz Umrani
Publication date
13-04-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5727-0

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue