Skip to main content
Erschienen in: Wireless Personal Communications 4/2019

13.04.2018

Experimental Evaluation of Intelligent Transport System with VLC Vehicle-to-Vehicle Communication

verfasst von: Faisal Ahmed Dahri, Hyder Bux Mangrio, Attiya Baqai, Fahim Aziz Umrani

Erschienen in: Wireless Personal Communications | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Visible light communication (VLC) is suitable and natural candidate for vehicular communication. This paper presents the vehicle to vehicle communication system based on VLC technology utilizing light emitting diodes (LEDs) as a transmitter and photodiode as a receiver. The LEDs are present everywhere in outdoor and vehicles utilizing those for communication. Vehicular ad hoc networks are facilitated by empowering enormous applications to require both proficient and reliable data delivery. Low-latency, simple and cost-effective system is designed with less complexity and high consistency by employing off-the-shelf LEDs and photodiodes which mitigates the implementation of complex protocols of typical wireless communication systems. The signal is transmitted from one vehicle that will be received by another vehicle to make sensible steps and to maintain strategic distance to avoid accidents. In this paper, the performance analysis of VLC based vehicle to vehicle communication (V2V) is presented. The results show that 3.5 Mbps and 500 kbps of data rates have been achieved over the distance of 0.5 and 15 m respectively. Amplitude shift keying, frequency shift keying (FSK) and phase shift keying schemes are tested with non-return-zero coding scheme. Bit error rate, received optical power and received signal voltages are measured and analyzed in this paper for V2V communication. The FSK modulation is an efficient technique for long distance as it has lower losses compared to other techniques. Warning messages are displayed on liquid crystal display. The prototype is evaluated experimentally over the distance of 15 m using an array of LEDs to reduce the chances of accidents. Bit error rate of 10−11 for FSK modulation has been achieved with the signal to noise ratio value of 13 dB in this work. The results confirmed the performance of the proposed system and presented that VLC is a feasible technology for vehicular communication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat World Health Organization. (2013). Global status report on road safety: Supporting a decade of action. Geneva: World Health Organization. World Health Organization. (2013). Global status report on road safety: Supporting a decade of action. Geneva: World Health Organization.
2.
Zurück zum Zitat World Health Organization. (2009). Global status report on road safety: Time for action. Geneva: World Health Organization. World Health Organization. (2009). Global status report on road safety: Time for action. Geneva: World Health Organization.
3.
Zurück zum Zitat Rodrigue, J. P. (2013). Urban transport problems. In The geography of transport systems (3rd edn., pp. 212–219). New York: Routledge Rodrigue, J. P. (2013). Urban transport problems. In The geography of transport systems (3rd edn., pp. 212–219). New York: Routledge
4.
Zurück zum Zitat Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.CrossRef Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.CrossRef
5.
Zurück zum Zitat Tanaka, Y., Komine, T., Haruyama, S., & Nakagawa, M. (2003). Indoor visible light data transmission system utilizing white LED lights. IEICE Transactions on Communications, 86(8), 2440–2454. Tanaka, Y., Komine, T., Haruyama, S., & Nakagawa, M. (2003). Indoor visible light data transmission system utilizing white LED lights. IEICE Transactions on Communications, 86(8), 2440–2454.
6.
Zurück zum Zitat Cahyadi, W. A., Kim, Y. H., Chung, Y. H., & Ghassemlooy, Z. (2015). Efficient road surface detection using visible light communication. In Seventh international conference on ubiquitous and future networks (ICUFN) (pp. 61–63). IEEE. Cahyadi, W. A., Kim, Y. H., Chung, Y. H., & Ghassemlooy, Z. (2015). Efficient road surface detection using visible light communication. In Seventh international conference on ubiquitous and future networks (ICUFN) (pp. 61–63). IEEE.
7.
Zurück zum Zitat Kim, Y. H., Jeong, T. I., & Chung, Y. H. (2015). Rear-end collision and blind spot reduced autonomous vehicles using sensors and cameras. Sensor Letters, 13(8), 646–649.CrossRef Kim, Y. H., Jeong, T. I., & Chung, Y. H. (2015). Rear-end collision and blind spot reduced autonomous vehicles using sensors and cameras. Sensor Letters, 13(8), 646–649.CrossRef
8.
Zurück zum Zitat Kim, D. R., Yang, S. H., Kim, H. S., Son, Y. H., & Han, S. K. (2012). Outdoor visible light communication for inter-vehicle communication using controller area network. In Fourth international conference on communications and electronics (ICCE) (pp. 31–34). IEEE. Kim, D. R., Yang, S. H., Kim, H. S., Son, Y. H., & Han, S. K. (2012). Outdoor visible light communication for inter-vehicle communication using controller area network. In Fourth international conference on communications and electronics (ICCE) (pp. 31–34). IEEE.
9.
Zurück zum Zitat Morgan, Y. L. (2010). Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 12(4), 504–518.CrossRef Morgan, Y. L. (2010). Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 12(4), 504–518.CrossRef
10.
Zurück zum Zitat Weidel, E. (2006). U.S. Patent No. 7,150,552. Washington, DC: U.S. Patent and Trademark Office. Weidel, E. (2006). U.S. Patent No. 7,150,552. Washington, DC: U.S. Patent and Trademark Office.
11.
Zurück zum Zitat Pisek, E., Rajagopal, S., & Abu-Surra, S. (2012). Gigabit rate mobile connectivity through visible light communication. In International conference on communications (ICC) (pp. 3122–3127). IEEE. Pisek, E., Rajagopal, S., & Abu-Surra, S. (2012). Gigabit rate mobile connectivity through visible light communication. In International conference on communications (ICC) (pp. 3122–3127). IEEE.
12.
Zurück zum Zitat Yu, S. H., Shih, O., Tsai, H. M., Wisitpongphan, N., & Roberts, R. D. (2013). Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12), 50–59.CrossRef Yu, S. H., Shih, O., Tsai, H. M., Wisitpongphan, N., & Roberts, R. D. (2013). Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12), 50–59.CrossRef
13.
Zurück zum Zitat Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2014). Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7), 88–97.CrossRef Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2014). Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7), 88–97.CrossRef
14.
Zurück zum Zitat Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., & Menouar, H. (2015). Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Vehicular Technology Magazine, 10(4), 45–53.CrossRef Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., & Menouar, H. (2015). Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Vehicular Technology Magazine, 10(4), 45–53.CrossRef
15.
Zurück zum Zitat Ferraz, P. A. P., & Santos, I. S. (2015). Visible light communication applied on vehicle-to-vehicle networks. In International conference on mechatronics, electronics and automotive engineering (ICMEAE) (pp. 231–235). IEEE. Ferraz, P. A. P., & Santos, I. S. (2015). Visible light communication applied on vehicle-to-vehicle networks. In International conference on mechatronics, electronics and automotive engineering (ICMEAE) (pp. 231–235). IEEE.
16.
Zurück zum Zitat Al Abdulsalam, N., Al Hajri, R., Al Abri, Z., Al Lawati, Z., & Bait-Suwailam, M. M. (2015). Design and implementation of a vehicle to vehicle communication system using Li-Fi technology. In International conference on information and communication technology research (ICTRC) (pp. 136–139). IEEE. Al Abdulsalam, N., Al Hajri, R., Al Abri, Z., Al Lawati, Z., & Bait-Suwailam, M. M. (2015). Design and implementation of a vehicle to vehicle communication system using Li-Fi technology. In International conference on information and communication technology research (ICTRC) (pp. 136–139). IEEE.
17.
Zurück zum Zitat Khairi, D., & Berqia, A. (2015). Li-Fi the future of vehicular ad hoc networks. Transactions on Networks and Communications, 3(3), 31. Khairi, D., & Berqia, A. (2015). Li-Fi the future of vehicular ad hoc networks. Transactions on Networks and Communications, 3(3), 31.
18.
Zurück zum Zitat Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 8th International symposium on communication systems networks & digital signal processing (CSNDSP) (pp. 1–6). Poznan. Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 8th International symposium on communication systems networks & digital signal processing (CSNDSP) (pp. 1–6). Poznan.
19.
Zurück zum Zitat LAN/MAN Standards Committee of the IEEE Computer Society. (2010). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications Amendment 6: Wireless access in vehicular environments. In IEEE standards (Vol. 802, pp. 1–51). LAN/MAN Standards Committee of the IEEE Computer Society. (2010). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications Amendment 6: Wireless access in vehicular environments. In IEEE standards (Vol. 802, pp. 1–51).
20.
Zurück zum Zitat Sasaki, N., Iijima, N., & Uchiyama, D. (2015). Development of ranging method for inter-vehicle distance using visible light communication and image processing. In 15th International conference on control, automation and systems (ICCAS) (pp. 666–670). IEEE. Sasaki, N., Iijima, N., & Uchiyama, D. (2015). Development of ranging method for inter-vehicle distance using visible light communication and image processing. In 15th International conference on control, automation and systems (ICCAS) (pp. 666–670). IEEE.
21.
Zurück zum Zitat You, S. H., Chang, S. H., Lin, H. M., & Tsai, H. M. (2013). Visible light communications for scooter safety. In Proceeding of the 11th annual international conference on mobile systems, applications, and services (pp. 509–510). ACM. You, S. H., Chang, S. H., Lin, H. M., & Tsai, H. M. (2013). Visible light communications for scooter safety. In Proceeding of the 11th annual international conference on mobile systems, applications, and services (pp. 509–510). ACM.
22.
Zurück zum Zitat Kim, Y. H., Cahyadi, W. A., & Chung, Y. H. (2015). Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics Journal, 7(6), 1–9.CrossRef Kim, Y. H., Cahyadi, W. A., & Chung, Y. H. (2015). Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics Journal, 7(6), 1–9.CrossRef
23.
Zurück zum Zitat Cailean, A., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Blosseville, J. M. (2012). Visible light communications: Application to cooperation between vehicles and road infrastructures. In Intelligent vehicles symposium (IV) (pp. 1055–1059). IEEE. Cailean, A., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Blosseville, J. M. (2012). Visible light communications: Application to cooperation between vehicles and road infrastructures. In Intelligent vehicles symposium (IV) (pp. 1055–1059). IEEE.
24.
Zurück zum Zitat Cailean, A. M., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Dimian, M. (2013). Visible light communications cooperative architecture for the intelligent transportation system. In 20th Symposium on communications and vehicular technology in the Benelux (SCVT) (pp. 1–5). IEEE. Cailean, A. M., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Dimian, M. (2013). Visible light communications cooperative architecture for the intelligent transportation system. In 20th Symposium on communications and vehicular technology in the Benelux (SCVT) (pp. 1–5). IEEE.
25.
Zurück zum Zitat Yoo, J. H., Jang, J. S., Kwon, J. K., Kim, H. C., Song, D. W., & Jung, S. Y. (2016). Demonstration of vehicular visible light communication based on LED headlamp. International Journal of Automotive Technology, 17(2), 347–352.CrossRef Yoo, J. H., Jang, J. S., Kwon, J. K., Kim, H. C., Song, D. W., & Jung, S. Y. (2016). Demonstration of vehicular visible light communication based on LED headlamp. International Journal of Automotive Technology, 17(2), 347–352.CrossRef
26.
Zurück zum Zitat Béchadergue, B., Chassagne, L., & Guan, H. (2017). Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Optics Express, 25(20), 24790–24802.CrossRef Béchadergue, B., Chassagne, L., & Guan, H. (2017). Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Optics Express, 25(20), 24790–24802.CrossRef
27.
Zurück zum Zitat Prabhu, T. N., Adharsh, M., Ashok, K. M., Gokul, K. M., & Dhayanithi, G. (2017). Vehicle to vehicle communication using light fidelity. International Journal of Computer Applications, 164(2), 5–8.CrossRef Prabhu, T. N., Adharsh, M., Ashok, K. M., Gokul, K. M., & Dhayanithi, G. (2017). Vehicle to vehicle communication using light fidelity. International Journal of Computer Applications, 164(2), 5–8.CrossRef
Metadaten
Titel
Experimental Evaluation of Intelligent Transport System with VLC Vehicle-to-Vehicle Communication
verfasst von
Faisal Ahmed Dahri
Hyder Bux Mangrio
Attiya Baqai
Fahim Aziz Umrani
Publikationsdatum
13.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5727-0

Weitere Artikel der Ausgabe 4/2019

Wireless Personal Communications 4/2019 Zur Ausgabe

Neuer Inhalt