Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 5/2022

03-08-2022 | Original Research Article

Experimental Investigation on Solidification Structure and Carbides in Continuously Cast Slab of High Manganese Steel Mn13

Authors: Xuexue Yuan, Sen Luo, Weiling Wang, Miaoyong Zhu

Published in: Metallurgical and Materials Transactions B | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the high carbon and manganese content in high manganese steel Mn13, as-cast high manganese steel usually suffers from coarse solidification structure and carbide, which have a great detrimental effect on the high temperature mechanical properties of high manganese steel Mn13, and thus it is difficult to be produced by continuous casting process. In order to elucidate the solidification structure formation and carbide precipitation in the continuously cast slab of high manganese steel Mn13, several experiment methods, such as optical microscope (OM), electron backscatter diffraction (EBSD), field emission electron probe microanalyzer (EPMA), scanning electron microscope (SEM) and infrared C/S analyzer, and thermodynamic software Thermo-Calc were used to investigate the as-cast solidification structure, macro/micro solute segregation, and 2D/3D carbide morphology in the continuously cast slab of high manganese steel Mn13. The results show that the solidification structure of the Mn13 slab is mainly composed of coarse columnar crystals and the proportion of coarse columnar crystals is as high as 65.22 pct. The proportion of high angle grain boundaries (HAGB) in the equiaxed zone is 46.12 pct, but the proportion of HAGB in the columnar zone is only 11.98 pct. Both the C solute and Mn solute are rejected from the solid and enriched at the grain boundary, especially at the HAGB, where the growth direction of adjacent grains is quite different. The significant solute segregation and high grain boundary energy are both beneficial for the eutectic carbide formation and growth at the HAGB. Thus, the eutectic carbide is prone to form at the HAGB than the low angle grain boundaries (LAGB), and the thickness of the eutectic carbide at the HAGB is significantly thicker than that at the LAGB. The morphology of carbide from the slab subsurface to the center changes as follows: slender strip and small block → long strip and needle → long strip and lamellar. The secondary dendrite arm spacing (λII, μm) and the average carbide thickness (λc, μm), in the continuously cast slab of Mn13 steel, are formulated as functions of local cooling rate, (ν, °C s−1), and determined by
$$\begin{aligned} \lambda_{{{\text{II}}}} & = 54.98 \times \nu^{ - 0.34} ,\,R^{2} = 0.9802 \\ \lambda_{{\text{c}}} & = \, 31.10 \times e^{ - 10.59 \times v} + 2.26 \times e^{{ - 4.17 \times 10^{ - 2} \times v}} ,\,R^{2} = 0.9327 \\ \end{aligned}$$
.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Jacob, S.R. Sankaranarayanan, and S.P.K. Babu: Mater. Today: Proc, 2020, vol. 27, pp. 2852–58. R. Jacob, S.R. Sankaranarayanan, and S.P.K. Babu: Mater. Today: Proc, 2020, vol. 27, pp. 2852–58.
2.
go back to reference Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12, pp. 749–59.CrossRef Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12, pp. 749–59.CrossRef
3.
go back to reference P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Mater. Trans. A, 1986, vol. 17, pp. 1725–37.CrossRef P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Mater. Trans. A, 1986, vol. 17, pp. 1725–37.CrossRef
4.
5.
go back to reference E. Curiel-Reyna, J. Contreras, T. Rangel-Ortis, A. Herrera, L. Baños, A.del. Real and M.E. Rodríguez: Mater. Manuf. Process., 2007, vol. 23, pp. 14–20. E. Curiel-Reyna, J. Contreras, T. Rangel-Ortis, A. Herrera, L. Baños, A.del. Real and M.E. Rodríguez: Mater. Manuf. Process., 2007, vol. 23, pp. 14–20.
6.
go back to reference X.Y. Feng, F.C. Zhang, Z.N. Yang, and M. Zhang: Wear, 2013, vol. 305, pp. 299–304.CrossRef X.Y. Feng, F.C. Zhang, Z.N. Yang, and M. Zhang: Wear, 2013, vol. 305, pp. 299–304.CrossRef
7.
go back to reference S.H.M. Anijdan and M. Sabzi: J. Mater. Eng. Perform., 2018, vol. 27, pp. 5246–253.CrossRef S.H.M. Anijdan and M. Sabzi: J. Mater. Eng. Perform., 2018, vol. 27, pp. 5246–253.CrossRef
8.
go back to reference M. Azadi, A.M. Pazuki, and M.J. Olya: Metallogr. Microstruct. Anal., 2018, vol. 7, pp. 618–26.CrossRef M. Azadi, A.M. Pazuki, and M.J. Olya: Metallogr. Microstruct. Anal., 2018, vol. 7, pp. 618–26.CrossRef
9.
go back to reference S. Ayadi, A. Hadji, and K. Hakan: J. Mater. Res. Technol., 2020, vol. 9, pp. 11545–62.CrossRef S. Ayadi, A. Hadji, and K. Hakan: J. Mater. Res. Technol., 2020, vol. 9, pp. 11545–62.CrossRef
10.
go back to reference J.O. Agunsoye, S.I. Talabi, and O. Bello: Adv. Prod. Eng. Manag., 2015, vol. 10, pp. 97–107. J.O. Agunsoye, S.I. Talabi, and O. Bello: Adv. Prod. Eng. Manag., 2015, vol. 10, pp. 97–107.
11.
go back to reference A.F. Khan, A.M. Rana, Misbah-ul-Islam, M. Imran and A. Tahir: J. Appl. Sci., 2001, vol. 1, pp. 317–20. A.F. Khan, A.M. Rana, Misbah-ul-Islam, M. Imran and A. Tahir: J. Appl. Sci., 2001, vol. 1, pp. 317–20.
12.
go back to reference Y. Luan, N. Song, Y. Bai, X. Kang, and D. Li: J. Mater. Process. Technol., 2010, vol. 210, pp. 536–41.CrossRef Y. Luan, N. Song, Y. Bai, X. Kang, and D. Li: J. Mater. Process. Technol., 2010, vol. 210, pp. 536–41.CrossRef
13.
go back to reference S.A. Balogun, D.E. Esezobor, and J.O. Agunsoye: J. Min. Mater. Char. Eng., 2008, vol. 7, pp. 277–89. S.A. Balogun, D.E. Esezobor, and J.O. Agunsoye: J. Min. Mater. Char. Eng., 2008, vol. 7, pp. 277–89.
14.
15.
go back to reference Y. Huang, G. Cheng, M. Zhu, and W. Dai: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 700–13.CrossRef Y. Huang, G. Cheng, M. Zhu, and W. Dai: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 700–13.CrossRef
16.
go back to reference N. Du, H. Liu, Y. Cao, P. Fu, and D. Li: Mater. Charact., 2021, vol. 174, pp. 111011.CrossRef N. Du, H. Liu, Y. Cao, P. Fu, and D. Li: Mater. Charact., 2021, vol. 174, pp. 111011.CrossRef
17.
go back to reference Q.T. Zhu, J. Li, J. Zhang, C.B. Shi, J.H. Li, and J. Huang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1365–77.CrossRef Q.T. Zhu, J. Li, J. Zhang, C.B. Shi, J.H. Li, and J. Huang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1365–77.CrossRef
18.
19.
go back to reference S. Ayadi and A. Hadji: Metallofiz. Noveishie Tekhnol., 2019, vol. 41, pp. 607–20.CrossRef S. Ayadi and A. Hadji: Metallofiz. Noveishie Tekhnol., 2019, vol. 41, pp. 607–20.CrossRef
20.
go back to reference A. Souad and H. Ali: Int. J. Metalcast., 2020, vol. 15, pp. 510–19. A. Souad and H. Ali: Int. J. Metalcast., 2020, vol. 15, pp. 510–19.
21.
go back to reference M. Sabzi, S.M. Far, and S.M. Dezfuli: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 1431–38.CrossRef M. Sabzi, S.M. Far, and S.M. Dezfuli: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 1431–38.CrossRef
22.
go back to reference D. Gorlenko, K. Vdovin, and N. Feoktistov: China Foundry, 2016, vol. 13, pp. 433–42.CrossRef D. Gorlenko, K. Vdovin, and N. Feoktistov: China Foundry, 2016, vol. 13, pp. 433–42.CrossRef
23.
go back to reference K.N. Vdovin, D.A. Gorlenko, and N.A. Feoktistov: Met. Sci. Heat Treat., 2017, vol. 59, pp. 203–07.CrossRef K.N. Vdovin, D.A. Gorlenko, and N.A. Feoktistov: Met. Sci. Heat Treat., 2017, vol. 59, pp. 203–07.CrossRef
25.
go back to reference J.M. Li, M.F. Jiang, J.X. Ning, and J. Zhai: J. Iron Steel Res. Int., 2020, vol. 27, pp. 665–72.CrossRef J.M. Li, M.F. Jiang, J.X. Ning, and J. Zhai: J. Iron Steel Res. Int., 2020, vol. 27, pp. 665–72.CrossRef
26.
go back to reference Z.H. Wang, S. Luo, W.L. Wang, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2882–94.CrossRef Z.H. Wang, S. Luo, W.L. Wang, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2882–94.CrossRef
27.
go back to reference C. Sudha, R. Anand, S. Saroja, and M. Vijayalakshmi: Trans. Indian Inst. Met., 2010, vol. 63, pp. 739–44.CrossRef C. Sudha, R. Anand, S. Saroja, and M. Vijayalakshmi: Trans. Indian Inst. Met., 2010, vol. 63, pp. 739–44.CrossRef
28.
go back to reference A. Nicholas, Grundy, S. Münch, S. Feldhaus and J. Bratberg: IOP Conf. Ser. 2019, vol. 529, pp. 012069. A. Nicholas, Grundy, S. Münch, S. Feldhaus and J. Bratberg: IOP Conf. Ser. 2019, vol. 529, pp. 012069.
29.
go back to reference H. Gleiter: Physical Metallurgy, 4th ed., W.C Robert and H. Peter, North-Holland, NH, 1996, pp.843–942. H. Gleiter: Physical Metallurgy, 4th ed., W.C Robert and H. Peter, North-Holland, NH, 1996, pp.843–942.
Metadata
Title
Experimental Investigation on Solidification Structure and Carbides in Continuously Cast Slab of High Manganese Steel Mn13
Authors
Xuexue Yuan
Sen Luo
Weiling Wang
Miaoyong Zhu
Publication date
03-08-2022
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 5/2022
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-022-02596-1

Other articles of this Issue 5/2022

Metallurgical and Materials Transactions B 5/2022 Go to the issue

Premium Partners