Skip to main content
Top

2021 | OriginalPaper | Chapter

Experimental Study and Analysis of Defragmented Carbon Nanotubes in Polyacrylonitrile Matrix

Authors : N. Arunkumar, Joven Job, D. Ananthapadmanaban, N. E. Arun Kumar, N. Sathishkumar

Published in: Trends in Manufacturing and Engineering Management

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this research is to elucidate the change in electrical properties of polyacrylonitrile (PAN) polymer when reinforced with defragmented multiwall carbon nanotubes. In conventional chopped fiber-reinforced polymer composites, uniform distributions of fibers throughout the matrix are critical for producing materials with superior physical and electrical properties. The previous methods have dispersed carbon nanotubes by aggressive chemical modification of the nanotubes or by the use of a surfactant prior to dispersion. Here, ultrasonic energy was used to uniformly disperse and defragment the multiwall nanotubes (MWNTs) in solutions and to incorporate them into composites without chemical pretreatment. A common solvent dimethylformamide (DMF) is used for the dissolution process. The film is formed by solvent casting method which involves evaporation of the homogeneous solution of CNT and polymer. Electrical characteristic studies were done on the film samples. The electrical properties such as conductivity and resistivities were found and compared to the original polymer matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bhushan B (2010) Introduction of carbon nano tubes. In: Springer handbook of nanotechnology, Part A, pp 47–118 Bhushan B (2010) Introduction of carbon nano tubes. In: Springer handbook of nanotechnology, Part A, pp 47–118
2.
go back to reference Perie T, Brosse A-C, Tence-Girault S (2012) Mechanical and electrical properties of multi walled carbon nanotubes/ABC block terpolymer composites. Carbon 50(8):2918–2928CrossRef Perie T, Brosse A-C, Tence-Girault S (2012) Mechanical and electrical properties of multi walled carbon nanotubes/ABC block terpolymer composites. Carbon 50(8):2918–2928CrossRef
3.
go back to reference Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mater Sci Eng: R: Rep 70(3–6):341–353CrossRef Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mater Sci Eng: R: Rep 70(3–6):341–353CrossRef
4.
go back to reference Shokrieh MM, Rafiee R (2010) Mechanics of composite materials. Chem Mater Sci 46(2):155–172 Shokrieh MM, Rafiee R (2010) Mechanics of composite materials. Chem Mater Sci 46(2):155–172
5.
go back to reference Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358 Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358
6.
go back to reference Inam F, Reece MJ, Peijs T (2012) Shortened carbon nanotubes and their influence on the electrical properties of polymer nanocomposites. J Compos Mater 46(11):1313–1322 Inam F, Reece MJ, Peijs T (2012) Shortened carbon nanotubes and their influence on the electrical properties of polymer nanocomposites. J Compos Mater 46(11):1313–1322
7.
go back to reference Zhang Y, Rutledge GC (2012) Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and Mats. Macromolecules 45(10):4238–4246 Zhang Y, Rutledge GC (2012) Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and Mats. Macromolecules 45(10):4238–4246
8.
go back to reference Hou H, Reneker DH (2004) Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv Mater 16:69–73CrossRef Hou H, Reneker DH (2004) Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv Mater 16:69–73CrossRef
9.
go back to reference Rzepka M, Bauer E, Reichenauer G, Schliermann T, Bernhardt B, Bohmhammel K (2005) Hydrogen storage capacity of catalytically grown carbon nanofibers. J Phys Chem B 109:14979–14989CrossRef Rzepka M, Bauer E, Reichenauer G, Schliermann T, Bernhardt B, Bohmhammel K (2005) Hydrogen storage capacity of catalytically grown carbon nanofibers. J Phys Chem B 109:14979–14989CrossRef
10.
go back to reference Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5673 Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5673
11.
go back to reference Aravind SS, Eswaraiah V, Ramaprabhu S (2011) Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapor deposition. J Mater Chem 21:15179 Aravind SS, Eswaraiah V, Ramaprabhu S (2011) Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapor deposition. J Mater Chem 21:15179
12.
go back to reference Jeong JM, Choi MY, Ahn YT (2006) Morphology and properties of polyacrylonitrile nanocomposite prepared viain-situ polymeriszation with macroazoinitiator. Macromol Res 14(3):312–317 Jeong JM, Choi MY, Ahn YT (2006) Morphology and properties of polyacrylonitrile nanocomposite prepared viain-situ polymeriszation with macroazoinitiator. Macromol Res 14(3):312–317
13.
go back to reference Lu C, Liu J (2006) controlling the diameter of carbon nanotubes in chemical vapor deposition Method by carbon feeding. J Phys Chem 110(41):20254–20257CrossRef Lu C, Liu J (2006) controlling the diameter of carbon nanotubes in chemical vapor deposition Method by carbon feeding. J Phys Chem 110(41):20254–20257CrossRef
14.
go back to reference Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang K-Y, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon Nanotubes at lowtemperatures. Nano Letters 6(6):1107–1112 Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang K-Y, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon Nanotubes at lowtemperatures. Nano Letters 6(6):1107–1112
15.
go back to reference Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814 Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814
16.
go back to reference Arai T, Yamazaki H, Tsujimoto T (2006) Solvent casting process. US Patent No. 7,132,074 Arai T, Yamazaki H, Tsujimoto T (2006) Solvent casting process. US Patent No. 7,132,074
17.
go back to reference Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6(1):137 Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6(1):137
18.
go back to reference Kim JH, Ganapathya HS, Hong S-S, Gal Y-S, Lim KT (2008) Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process. J Supercrit Fluids 47:103–107CrossRef Kim JH, Ganapathya HS, Hong S-S, Gal Y-S, Lim KT (2008) Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process. J Supercrit Fluids 47:103–107CrossRef
19.
go back to reference Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84(14):2660–2669CrossRef Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84(14):2660–2669CrossRef
20.
go back to reference Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRef Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRef
Metadata
Title
Experimental Study and Analysis of Defragmented Carbon Nanotubes in Polyacrylonitrile Matrix
Authors
N. Arunkumar
Joven Job
D. Ananthapadmanaban
N. E. Arun Kumar
N. Sathishkumar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4745-4_29

Premium Partners