Skip to main content
Top
Published in: Rare Metals 1/2021

09-12-2019

Experimental study and cellular automaton simulation on solidification microstructure of Mg–Gd–Y–Zr alloy

Authors: Xu-Yang Wang, Fei-Fan Wang, Ke-Yan Wu, Xian-Fei Wang, Lv Xiao, Zhong-Quan Li, Zhi-Qiang Han

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solidification microstructure of Mg–Gd–Y–Zr alloy was investigated via an experimental study and cellular automaton (CA) simulation. In this study, step-shaped castings were produced, and the temperature variation inside the casting was recorded using thermocouples during the solidification process. The effects of the cooling rate and Zr content on the grain size of the Mg–Gd–Y–Zr alloy were studied. The results showed that the grain size decreased with an increase in the cooling rate and Zr content. Based on the experimental data, a quantitative model for calculating the heterogeneous nucleation rate was developed, and the model parameters were determined. The evolution of the solidification microstructure was simulated using the CA method, where the quantitative nucleation model was used and a solute partition coefficient was introduced to deal with the solute trapping in front of the solid–liquid (S/L) interface. The simulation results of the grain size were in good agreement with the experimental data. The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6–11.0 °C·s−1, which was verified indirectly by the experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[2]
go back to reference Zhang K, Li X, Li Y, Yuan J, Liu X, Wang S. Properties of ZM51 magnesium alloys with heat treatments. Chin J Rare Met. 2019;43(6):585. Zhang K, Li X, Li Y, Yuan J, Liu X, Wang S. Properties of ZM51 magnesium alloys with heat treatments. Chin J Rare Met. 2019;43(6):585.
[3]
go back to reference Han Z, Pan H, Li Y, Luo AA, Sachdev AK. Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D. Metall Mater Trans B. 2015;46(1):328.CrossRef Han Z, Pan H, Li Y, Luo AA, Sachdev AK. Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D. Metall Mater Trans B. 2015;46(1):328.CrossRef
[4]
go back to reference Han GM, Han ZQ, Luo AA, Liu BC. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy. J Alloys Compd. 2015;641:56.CrossRef Han GM, Han ZQ, Luo AA, Liu BC. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy. J Alloys Compd. 2015;641:56.CrossRef
[5]
go back to reference Zheng L, Liu C, Wan Y, Yang P, Shu X. Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt%) alloy. J Alloys Compd. 2011;509(35):8832.CrossRef Zheng L, Liu C, Wan Y, Yang P, Shu X. Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt%) alloy. J Alloys Compd. 2011;509(35):8832.CrossRef
[6]
go back to reference Xu C, Xu SW, Zheng MY, Wu K, Wang ED, Kamado S, Wang GJ, Lv XY. Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J Alloys Compd. 2012;524:546.CrossRef Xu C, Xu SW, Zheng MY, Wu K, Wang ED, Kamado S, Wang GJ, Lv XY. Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J Alloys Compd. 2012;524:546.CrossRef
[7]
go back to reference Wu K, Wang X, Xiao L, Li Z, Han Z. Experimental study on the effect of cooling rate on the secondary phase in as-cast Mg–Gd–Y–Zr alloy. Adv Eng Mater. 2018;20(3):1700717.CrossRef Wu K, Wang X, Xiao L, Li Z, Han Z. Experimental study on the effect of cooling rate on the secondary phase in as-cast Mg–Gd–Y–Zr alloy. Adv Eng Mater. 2018;20(3):1700717.CrossRef
[8]
go back to reference Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater Sci Eng, A. 2013;559:364.CrossRef Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater Sci Eng, A. 2013;559:364.CrossRef
[9]
go back to reference Huo L, Han ZQ, Liu BC. Effect of microstructure on tensile and fatigue properties of cast Mg–10Gd–2Y–0.5Zr alloy. Int J Cast Met Res. 2009;22(1–4):123.CrossRef Huo L, Han ZQ, Liu BC. Effect of microstructure on tensile and fatigue properties of cast Mg–10Gd–2Y–0.5Zr alloy. Int J Cast Met Res. 2009;22(1–4):123.CrossRef
[10]
go back to reference Zhou J, Yang Y, Tong W, Wang J, Fu J, Wang B. Effect of cooling rate on the solidified microstructure of Mg-Gd-Y-Zr alloy. Rare Metal Mater Eng. 2010;39(11):1899.CrossRef Zhou J, Yang Y, Tong W, Wang J, Fu J, Wang B. Effect of cooling rate on the solidified microstructure of Mg-Gd-Y-Zr alloy. Rare Metal Mater Eng. 2010;39(11):1899.CrossRef
[11]
go back to reference Pang S, Wu G, Liu W, Sun M, Zhang Y, Liu Z, Ding W. Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg–10Gd–3Y–0.5Zr magnesium alloy. Mater Sci Eng, A. 2013;562:152.CrossRef Pang S, Wu G, Liu W, Sun M, Zhang Y, Liu Z, Ding W. Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg–10Gd–3Y–0.5Zr magnesium alloy. Mater Sci Eng, A. 2013;562:152.CrossRef
[12]
go back to reference Pang S, Wu G, Liu WC, Zhang L, Zhang Y, Conrad H, Ding WJ. Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4Zr alloy. Trans Nonferrous Met Soc China. 2014;24(11):3413.CrossRef Pang S, Wu G, Liu WC, Zhang L, Zhang Y, Conrad H, Ding WJ. Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4Zr alloy. Trans Nonferrous Met Soc China. 2014;24(11):3413.CrossRef
[13]
go back to reference Lee YC, Dahle AK, StJohn DH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;31(11):2895.CrossRef Lee YC, Dahle AK, StJohn DH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;31(11):2895.CrossRef
[14]
go back to reference Qian M, Das A. Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains. Scr Mater. 2006;54(5):881.CrossRef Qian M, Das A. Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains. Scr Mater. 2006;54(5):881.CrossRef
[15]
go back to reference Sun M, Wu G, Wang W, Ding W. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater Sci Eng, A. 2009;523(1–2):145.CrossRef Sun M, Wu G, Wang W, Ding W. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater Sci Eng, A. 2009;523(1–2):145.CrossRef
[16]
go back to reference Sun M, Easton MA, StJohn DH, Wu G, Abbott TB, Ding W. Grain refinement of magnesium alloys by Mg–Zr master alloys: the role of alloy chemistry and Zr particle number density. Adv Eng Mater. 2013;15(5):373.CrossRef Sun M, Easton MA, StJohn DH, Wu G, Abbott TB, Ding W. Grain refinement of magnesium alloys by Mg–Zr master alloys: the role of alloy chemistry and Zr particle number density. Adv Eng Mater. 2013;15(5):373.CrossRef
[17]
go back to reference Jiang L, Liu W, Wu G, Ding W. Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg–Gd–Y–Zr alloy. Mater Sci Eng, A. 2014;612:293.CrossRef Jiang L, Liu W, Wu G, Ding W. Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg–Gd–Y–Zr alloy. Mater Sci Eng, A. 2014;612:293.CrossRef
[18]
go back to reference Zhang X, Zhao J, Jiang H, Zhu M. A three-dimensional cellular automaton model for dendritic growth in multi-component alloys. Acta Mater. 2012;60(5):2249.CrossRef Zhang X, Zhao J, Jiang H, Zhu M. A three-dimensional cellular automaton model for dendritic growth in multi-component alloys. Acta Mater. 2012;60(5):2249.CrossRef
[19]
go back to reference Wu M, Xiong S. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method. Acta Metall Sin. 2010;46(12):1534. Wu M, Xiong S. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method. Acta Metall Sin. 2010;46(12):1534.
[20]
go back to reference Su B, Han Z, Liu B. Cellular automaton modeling of austenite nucleation and growth in hypoeutectoid steel during heating process. ISIJ Int. 2013;53(3):527.CrossRef Su B, Han Z, Liu B. Cellular automaton modeling of austenite nucleation and growth in hypoeutectoid steel during heating process. ISIJ Int. 2013;53(3):527.CrossRef
[21]
go back to reference Han G, Han Z, Luo AA, Liu B. Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg–Al-based alloys. Metall Mater Trans A. 2015;46(2):948.CrossRef Han G, Han Z, Luo AA, Liu B. Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg–Al-based alloys. Metall Mater Trans A. 2015;46(2):948.CrossRef
[22]
go back to reference Han Z, Han G, Luo AA, Liu B. Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Comput Mater Sci. 2015;101:248.CrossRef Han Z, Han G, Luo AA, Liu B. Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Comput Mater Sci. 2015;101:248.CrossRef
[23]
go back to reference Beltran-Sanchez L, Stefanescu DM. Growth of solutal dendrites-a cellular automaton model. Int J Cast Met Res. 2003;15(3):251.CrossRef Beltran-Sanchez L, Stefanescu DM. Growth of solutal dendrites-a cellular automaton model. Int J Cast Met Res. 2003;15(3):251.CrossRef
[24]
go back to reference Beltran-Sanchez L. Stefanescu DM Growth of solutal dendrites: a cellular automaton model and its quantitative capabilities. Metall Mater Trans A. 2003;34(2):367.CrossRef Beltran-Sanchez L. Stefanescu DM Growth of solutal dendrites: a cellular automaton model and its quantitative capabilities. Metall Mater Trans A. 2003;34(2):367.CrossRef
[25]
go back to reference Han G, Han Z, Luo AA, Sachdev AK, Liu B. A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Scripta Mater. 2013;68(9):691.CrossRef Han G, Han Z, Luo AA, Sachdev AK, Liu B. A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Scripta Mater. 2013;68(9):691.CrossRef
[26]
go back to reference Yin H, Felicelli SD. A cellular automaton model for dendrite growth in magnesium alloy AZ91. Model Simul Mater Sci Eng. 2009;17:75011.CrossRef Yin H, Felicelli SD. A cellular automaton model for dendrite growth in magnesium alloy AZ91. Model Simul Mater Sci Eng. 2009;17:75011.CrossRef
[27]
go back to reference Zhang L, Wang YM, Zhang CB, Wang SQ, Ye HQ. A cellular automaton model of the transformation from austenite to ferrite in low carbon steels. Model Simul Mater Sci Eng. 2003;11:791.CrossRef Zhang L, Wang YM, Zhang CB, Wang SQ, Ye HQ. A cellular automaton model of the transformation from austenite to ferrite in low carbon steels. Model Simul Mater Sci Eng. 2003;11:791.CrossRef
[28]
go back to reference Michelic SC, Thuswaldner JM, Bernhard C. Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys. Acta Mater. 2010;58(7):2738.CrossRef Michelic SC, Thuswaldner JM, Bernhard C. Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys. Acta Mater. 2010;58(7):2738.CrossRef
[29]
go back to reference Zhu MF, Cao W, Chen SL, Hong CP, Chang YA. Modeling of microstructure and microsegregation in solidification of multi-component alloys. J Phase Equilib Diffus. 2007;28(1):130.CrossRef Zhu MF, Cao W, Chen SL, Hong CP, Chang YA. Modeling of microstructure and microsegregation in solidification of multi-component alloys. J Phase Equilib Diffus. 2007;28(1):130.CrossRef
[30]
go back to reference Luo S, Zhu MY. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method. Comput Mater Sci. 2013;71:10.CrossRef Luo S, Zhu MY. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method. Comput Mater Sci. 2013;71:10.CrossRef
[31]
go back to reference Zhao Y, Qin RS, Chen DF. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification. J Cryst Growth. 2013;377:72.CrossRef Zhao Y, Qin RS, Chen DF. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification. J Cryst Growth. 2013;377:72.CrossRef
[32]
go back to reference Sobolev SL. Rapid solidification under local nonequilibrium conditions. Phys Rev E. 1997;55(6):6845.CrossRef Sobolev SL. Rapid solidification under local nonequilibrium conditions. Phys Rev E. 1997;55(6):6845.CrossRef
[33]
go back to reference Pineau A, Guillemot G, Tourret D, Karma A, Gandin CA. Growth competition between columnar dendritic grains-cellular automaton versus phase field modeling. Acta Mater. 2018;155:286.CrossRef Pineau A, Guillemot G, Tourret D, Karma A, Gandin CA. Growth competition between columnar dendritic grains-cellular automaton versus phase field modeling. Acta Mater. 2018;155:286.CrossRef
[34]
go back to reference Wang H, Liu F, Yang W, Chen Z, Yang G, Zhou Y. Solute trapping model incorporating diffusive interface. Acta Mater. 2008;56(4):746.CrossRef Wang H, Liu F, Yang W, Chen Z, Yang G, Zhou Y. Solute trapping model incorporating diffusive interface. Acta Mater. 2008;56(4):746.CrossRef
[35]
go back to reference Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater. 1999;47(18):4481.CrossRef Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater. 1999;47(18):4481.CrossRef
[36]
go back to reference Liu Y, Xiao L, Zou W, Li B. Optimization of mechanical properties of GW63K heat-resistant Mg alloy. Hot Work Technol. 2015;24:210. Liu Y, Xiao L, Zou W, Li B. Optimization of mechanical properties of GW63K heat-resistant Mg alloy. Hot Work Technol. 2015;24:210.
[37]
go back to reference Christian JW. The Theory of Transformation in Metals and Alloys. 2nd ed. Oxford: Pergamon Press; 1975. 624. Christian JW. The Theory of Transformation in Metals and Alloys. 2nd ed. Oxford: Pergamon Press; 1975. 624.
[38]
go back to reference Huo L, Han Z, Liu B. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh. Acta Metall Sin. 2009;45(12):1414. Huo L, Han Z, Liu B. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh. Acta Metall Sin. 2009;45(12):1414.
[39]
go back to reference Aziz MJ. Model for solute redistribution during rapid solidification. J Appl Phys. 1982;53(2):1158.CrossRef Aziz MJ. Model for solute redistribution during rapid solidification. J Appl Phys. 1982;53(2):1158.CrossRef
Metadata
Title
Experimental study and cellular automaton simulation on solidification microstructure of Mg–Gd–Y–Zr alloy
Authors
Xu-Yang Wang
Fei-Fan Wang
Ke-Yan Wu
Xian-Fei Wang
Lv Xiao
Zhong-Quan Li
Zhi-Qiang Han
Publication date
09-12-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01355-7

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners