Skip to main content
Top
Published in: Strength of Materials 2/2018

25-05-2018

Experimental Study of Autofrettage

Authors: G. I. Lvov, V. O. Okorokov

Published in: Strength of Materials | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The autofrettage of alloy D16 disks is investigated experimentally. The results of the experimental modeling are compared with the numerical calculations. A mathematical model of plasticity is developed based on the performed cyclic push-pull tests of flat specimens. Additional functions of the previously accumulated plastic strain are incorporated into a nonlinear kinematic hardening model. The damage parameter is included according to the effective stress concept to describe a decrease in the elastic modulus during elastic-plastic deformation. Experimentally obtained distribution of residual circumferential and radial strains has shown a good agreement with the numerical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. H. Farrahi, E. Hosseinian, and A. Assempour, “On the material modeling of the autofrettaged pressure vessel steels,” J. Press. Vess. Technol., 131, 1121–1129 (2009).CrossRef G. H. Farrahi, E. Hosseinian, and A. Assempour, “On the material modeling of the autofrettaged pressure vessel steels,” J. Press. Vess. Technol., 131, 1121–1129 (2009).CrossRef
2.
go back to reference R. M. Bhatnagar, “Modeling, validation and design of autofrettage and compound cylinder,” Europ. J. Mech. A/Solids, 39, 17–25 (2013).CrossRef R. M. Bhatnagar, “Modeling, validation and design of autofrettage and compound cylinder,” Europ. J. Mech. A/Solids, 39, 17–25 (2013).CrossRef
3.
go back to reference M. Perl, J. Perry, T. Aharon, and O. Kolka, “Is there an “ultimate” autofrettage process?” J. Press. Vess. Technol., 134, 63–71 (2012). M. Perl, J. Perry, T. Aharon, and O. Kolka, “Is there an “ultimate” autofrettage process?” J. Press. Vess. Technol., 134, 63–71 (2012).
4.
go back to reference A. Parker, E. Troiano, J. H. Underwood, and C. Mossey, “Characterization of steels using a revised kinematic hardening model incorporating Bauschinger effect,” J. Press. Vess. Technol., 125, 277–281 (2003).CrossRef A. Parker, E. Troiano, J. H. Underwood, and C. Mossey, “Characterization of steels using a revised kinematic hardening model incorporating Bauschinger effect,” J. Press. Vess. Technol., 125, 277–281 (2003).CrossRef
5.
go back to reference K. Aliakbari and Kh. Farhangdoost, “The investigation of modeling material behavior in autofrettaged tubes made from aluminium alloys,” Int. J. Eng., 27, 803–810 (2014). K. Aliakbari and Kh. Farhangdoost, “The investigation of modeling material behavior in autofrettaged tubes made from aluminium alloys,” Int. J. Eng., 27, 803–810 (2014).
6.
go back to reference A. Puskar, “A correlation among elastic modulus defect, plastic strain and fatigue life of metals,” Mater. Sci. Forum, 119–121, 455–460 (1993). A. Puskar, “A correlation among elastic modulus defect, plastic strain and fatigue life of metals,” Mater. Sci. Forum, 119121, 455–460 (1993).
7.
go back to reference G. Lvov and O. Kostromitskaya, “Effect of material damage on autofrettage of thick-walled cylinder,” Universal J. Mech. Eng., 2, 44–48 (2014).CrossRef G. Lvov and O. Kostromitskaya, “Effect of material damage on autofrettage of thick-walled cylinder,” Universal J. Mech. Eng., 2, 44–48 (2014).CrossRef
8.
go back to reference H. Altenbach, G. Lvov, K. Naumenko, and V. Okorokov, “Consideration of damage in the analysis of autofrettage of thick-walled pressure vessels,” Proc. Inst. Mech. Eng. C, 230, 3585–3593 (2016).CrossRef H. Altenbach, G. Lvov, K. Naumenko, and V. Okorokov, “Consideration of damage in the analysis of autofrettage of thick-walled pressure vessels,” Proc. Inst. Mech. Eng. C, 230, 3585–3593 (2016).CrossRef
9.
go back to reference S. Murakami, Continuum Damage Mechanics, Springer (2012). S. Murakami, Continuum Damage Mechanics, Springer (2012).
10.
go back to reference ASTM-E9-89a. Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature, ASTM International, West Conshohocken, PA (2000). ASTM-E9-89a. Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature, ASTM International, West Conshohocken, PA (2000).
11.
go back to reference H. Badnava, S. M. Pezeshki, Kh. Fallah Nejad, and H. R. Farhoudi, “Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method,” J. Mech. Sci. Technol., 26, 3067–3072 (2012).CrossRef H. Badnava, S. M. Pezeshki, Kh. Fallah Nejad, and H. R. Farhoudi, “Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method,” J. Mech. Sci. Technol., 26, 3067–3072 (2012).CrossRef
12.
go back to reference M. Franulovic, R. Basan, and B. Krizan, “Kinematic hardening parameters identification with respect to objective function,” Int. J. Mech. Aerospace Industrial Mechatronics Eng., 8, 677–681 (2014). M. Franulovic, R. Basan, and B. Krizan, “Kinematic hardening parameters identification with respect to objective function,” Int. J. Mech. Aerospace Industrial Mechatronics Eng., 8, 677–681 (2014).
13.
go back to reference D. Szeliga, J. Gawad, and M. Pietrzyk, “Parameter identification of material model based on the inverse analysis,” Int. J. Appl. Math. Comput. Sci., 14, 549–556 (2004). D. Szeliga, J. Gawad, and M. Pietrzyk, “Parameter identification of material model based on the inverse analysis,” Int. J. Appl. Math. Comput. Sci., 14, 549–556 (2004).
14.
go back to reference A. Baltov and A. Sawczuk, “A rule of anisotropic hardening,” Acta Mech., 1, 81–92 (1965).CrossRef A. Baltov and A. Sawczuk, “A rule of anisotropic hardening,” Acta Mech., 1, 81–92 (1965).CrossRef
15.
go back to reference J. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations. Part I: Rules developed with internal variable concept. Part II: Of application internal variable concepts to the 316 stainless steel,” J. Press. Vess. Technol., 105, 153–164 (1983).CrossRef J. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations. Part I: Rules developed with internal variable concept. Part II: Of application internal variable concepts to the 316 stainless steel,” J. Press. Vess. Technol., 105, 153–164 (1983).CrossRef
Metadata
Title
Experimental Study of Autofrettage
Authors
G. I. Lvov
V. O. Okorokov
Publication date
25-05-2018
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2018
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9968-7

Other articles of this Issue 2/2018

Strength of Materials 2/2018 Go to the issue

Premium Partners