Skip to main content
Top
Published in: Microsystem Technologies 4/2019

20-07-2018 | Technical Paper

Experimental study of fabricating a four-layers Cantor fractal microfluidic chip by CO2 laser system

Authors: Zeyang Wu, Xueye Chen, Zhongli Wu, Qijian Zhang, Qi Gao

Published in: Microsystem Technologies | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we design a four-layers Cantor fractal microfluidic chip and study suitable materials and parameters to fabricate the microfluidic chip. The effect of changing the parameters of CO2 laser processing on different materials is studied by using CO2 laser processing method. Three kinds of materials are selected to process the microchannel. Then, three kinds of laser powers and three kinds of laser moving speeds are selected to form an orthogonal experiment. The better microchannels in the test range are compared by orthogonal experiment. Finally, the method of hot-pressing bonding is used to seal the four-layers Cantor fractal microfluidic chip. The experimental results show that CO2 laser processing plays an important role in the fabrication of microfluidic chips and it is a high efficiency and low-cost method. The combination method of CO2 laser processing and hot-pressing bonding provides a flexible and fast method for the complete fabrication of microfluidic chips.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Caiazzo F, Curcio F, Daurelio G et al (2005) Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam. J Mater Process Technol 159(3):279–285CrossRef Caiazzo F, Curcio F, Daurelio G et al (2005) Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam. J Mater Process Technol 159(3):279–285CrossRef
go back to reference Chen JJ, Shen CM, Ko YW (2013) Analytical study of a microfludic DNA amplification chip using water cooling effect. Biomed Microdevice 15(2):261–278CrossRef Chen JJ, Shen CM, Ko YW (2013) Analytical study of a microfludic DNA amplification chip using water cooling effect. Biomed Microdevice 15(2):261–278CrossRef
go back to reference Chen XY, Gao Q, Wang XL, Li XD (2016a) Experimental design and parameter optimization for laser three-dimensional (3-D) printing. Laser Eng 33:189–196 Chen XY, Gao Q, Wang XL, Li XD (2016a) Experimental design and parameter optimization for laser three-dimensional (3-D) printing. Laser Eng 33:189–196
go back to reference Chen X, Li T, Shen J (2016b) CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int Polym Proc 31(2):233–238CrossRef Chen X, Li T, Shen J (2016b) CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int Polym Proc 31(2):233–238CrossRef
go back to reference Chen X, Shen J, Zhou M (2016c) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRef Chen X, Shen J, Zhou M (2016c) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRef
go back to reference Chen X, Li T, Fu B (2016d) Surface roughness study on microchannels of CO2 laser fabricating PMMA-based microfluidic chip. Surf Rev Lett 24:1750017CrossRef Chen X, Li T, Fu B (2016d) Surface roughness study on microchannels of CO2 laser fabricating PMMA-based microfluidic chip. Surf Rev Lett 24:1750017CrossRef
go back to reference Chen XY et al (2017) Research on optimizing parameters of thermal bonding technique for PMMA microfluidic chip. Int Polym Proc 32(3):394–398CrossRef Chen XY et al (2017) Research on optimizing parameters of thermal bonding technique for PMMA microfluidic chip. Int Polym Proc 32(3):394–398CrossRef
go back to reference Cheng E, Yin Z, Zou H, Chen L (2015) Surface modification-assisted bonding of 2D polymer-based nanofluidic devices. Microfluid Nanofluid 10(3):527–535CrossRef Cheng E, Yin Z, Zou H, Chen L (2015) Surface modification-assisted bonding of 2D polymer-based nanofluidic devices. Microfluid Nanofluid 10(3):527–535CrossRef
go back to reference Davim JP, Barricas N, Conceicao M et al (2008) Some experimental studies on CO2 laser cutting quality of polymeric materials. J Mater Process Technol 198(1–3):99–104CrossRef Davim JP, Barricas N, Conceicao M et al (2008) Some experimental studies on CO2 laser cutting quality of polymeric materials. J Mater Process Technol 198(1–3):99–104CrossRef
go back to reference Humayun M, Chow C-W, Young E (2018) Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 18:1298–1309CrossRef Humayun M, Chow C-W, Young E (2018) Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 18:1298–1309CrossRef
go back to reference Jankowski P, Ogonczyk D, Kosinski A, Lisowski W, Garstecki P (2011) Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab Chip 11:748–752CrossRef Jankowski P, Ogonczyk D, Kosinski A, Lisowski W, Garstecki P (2011) Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab Chip 11:748–752CrossRef
go back to reference Li H, Fan Y, Kodzius R et al (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379CrossRef Li H, Fan Y, Kodzius R et al (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379CrossRef
go back to reference Lim CT, Low HY, Ng JKK, Liu WT, Zhang Y (2009) Fabrication of three-dimensional hemispherical structures using photolithography. Microfluid Nanofluid 7:721–726CrossRef Lim CT, Low HY, Ng JKK, Liu WT, Zhang Y (2009) Fabrication of three-dimensional hemispherical structures using photolithography. Microfluid Nanofluid 7:721–726CrossRef
go back to reference Liu HB, Gong HQ (2009) Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J Micromech Microeng 19:037002CrossRef Liu HB, Gong HQ (2009) Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J Micromech Microeng 19:037002CrossRef
go back to reference Liu Z, Shum HC (2013) Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies. Biomicrofluidics 7(4):044117CrossRef Liu Z, Shum HC (2013) Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies. Biomicrofluidics 7(4):044117CrossRef
go back to reference Ogonczyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRef Ogonczyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRef
go back to reference Qi H, Chen T, Yao LY, Zuo TC (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Laser Eng 47:594–598CrossRef Qi H, Chen T, Yao LY, Zuo TC (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Laser Eng 47:594–598CrossRef
go back to reference Rotting O, Ropke W, Becker H, Gartner C (2002) Polymer microfabrication technologies. Microsyst Technol 8:32–36CrossRef Rotting O, Ropke W, Becker H, Gartner C (2002) Polymer microfabrication technologies. Microsyst Technol 8:32–36CrossRef
go back to reference Snakenborg Detlef, Klank Henning, Kutter Jörg P (2003) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14(2):182CrossRef Snakenborg Detlef, Klank Henning, Kutter Jörg P (2003) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14(2):182CrossRef
go back to reference Yuan D, Das S (2007) Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J Appl Phys 101(2):024901CrossRef Yuan D, Das S (2007) Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J Appl Phys 101(2):024901CrossRef
go back to reference Zhou Bai Hua, Mahdavian SM (2004) Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. J Mater Process Technol 146(2):188–192CrossRef Zhou Bai Hua, Mahdavian SM (2004) Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. J Mater Process Technol 146(2):188–192CrossRef
Metadata
Title
Experimental study of fabricating a four-layers Cantor fractal microfluidic chip by CO2 laser system
Authors
Zeyang Wu
Xueye Chen
Zhongli Wu
Qijian Zhang
Qi Gao
Publication date
20-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4060-6

Other articles of this Issue 4/2019

Microsystem Technologies 4/2019 Go to the issue