Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2020

03-06-2020 | Research Paper

Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam

Authors: Minghui Yao, Pengfei Liu, Li Ma, Hongbo Wang, Wei Zhang

Published in: Acta Mechanica Sinica | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam. Experimental results show that the L-shaped piezoelectric beam generates two optimal voltage peaks when the horizontal beam size is similar to the vertical beam size. Several optimized L-shaped piezoelectric cantilever beam structures are proposed. Power generation using the inverted bistable L-shaped beam is better. It is observed experimentally that the inverted bistable L-shaped beam structure shows obvious bistable characteristics and hard spring characteristics. Furthermore, the corresponding relationship between the bistable phase portrait and the potential energy curve is found in the experiment. This is the first time that a phase portrait for stiffness hardening of an L-shaped beam has been found experimentally. These results can be applied to analysis of new piezoelectric power generation structures.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, Boston (2009)CrossRef Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, Boston (2009)CrossRef
2.
go back to reference Yoon, H.S.E., Kim, S.H., Kim, M.H.: Wireless piezoelectric strain sensing measurement using a frequency modulation technique. J. Intell. Mater. Syst. Struct. 26(9), 1103–1109 (2015)CrossRef Yoon, H.S.E., Kim, S.H., Kim, M.H.: Wireless piezoelectric strain sensing measurement using a frequency modulation technique. J. Intell. Mater. Syst. Struct. 26(9), 1103–1109 (2015)CrossRef
3.
go back to reference Laskovski, A.N., Yuce, M.R., Moheimani, S.O.R.: FM-based piezoelectric strain voltage sensor at ultra-low frequencies with wireless capability. Sensor. Actuat. A-Phys. 199, 49–55 (2013)CrossRef Laskovski, A.N., Yuce, M.R., Moheimani, S.O.R.: FM-based piezoelectric strain voltage sensor at ultra-low frequencies with wireless capability. Sensor. Actuat. A-Phys. 199, 49–55 (2013)CrossRef
4.
go back to reference Beeby, S., Torah, R., Tudor, M., et al.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)CrossRef Beeby, S., Torah, R., Tudor, M., et al.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)CrossRef
5.
go back to reference Gafforelli, G., Ardito, R., Corigliano, A.: Improved one-dimensional model of piezoelectric laminates for energy harvesters including three dimensional effects. Compos. Struct. 127, 369–381 (2015)CrossRef Gafforelli, G., Ardito, R., Corigliano, A.: Improved one-dimensional model of piezoelectric laminates for energy harvesters including three dimensional effects. Compos. Struct. 127, 369–381 (2015)CrossRef
6.
go back to reference Xu, S., Wang, Z.L.: Oxide nanowire arrays for light-emitting diodes and piezoelectric energy harvesters. Pure. Appl. Chem. 83(12), 2171–2198 (2011)CrossRef Xu, S., Wang, Z.L.: Oxide nanowire arrays for light-emitting diodes and piezoelectric energy harvesters. Pure. Appl. Chem. 83(12), 2171–2198 (2011)CrossRef
7.
go back to reference Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)CrossRef Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)CrossRef
8.
go back to reference Kerboua, M., Megnounif, A., Benguediab, M., et al.: Vibration control beam using piezoelectric-based smart materials. Compos. Struct. 123, 430–442 (2015)CrossRef Kerboua, M., Megnounif, A., Benguediab, M., et al.: Vibration control beam using piezoelectric-based smart materials. Compos. Struct. 123, 430–442 (2015)CrossRef
9.
go back to reference Shen, D., Ajitsaria, J., Kim, D.J.: The optimal design and analysis of piezoelectric cantilever beams for power generation devices. Mater. Res. Soc. Proc. 888, 271–276 (2006) Shen, D., Ajitsaria, J., Kim, D.J.: The optimal design and analysis of piezoelectric cantilever beams for power generation devices. Mater. Res. Soc. Proc. 888, 271–276 (2006)
10.
go back to reference Erturk, A., Tarazaga, P.A., Farmer, J.R., et al.: Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust. 131(1), 011010 (2009)CrossRef Erturk, A., Tarazaga, P.A., Farmer, J.R., et al.: Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust. 131(1), 011010 (2009)CrossRef
11.
go back to reference Fakhzan, M.N., Muthalif, A.G.: Harvesting vibration energy using piezoelectric material: modeling, simulation and experimental verifications. Mechatronics 23(1), 61–66 (2013)CrossRef Fakhzan, M.N., Muthalif, A.G.: Harvesting vibration energy using piezoelectric material: modeling, simulation and experimental verifications. Mechatronics 23(1), 61–66 (2013)CrossRef
12.
go back to reference Ferrari, M., Ferrari, V., Guizzetti, M., et al.: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensor. Actuat. A-Phys. 142, 329–335 (2008)CrossRef Ferrari, M., Ferrari, V., Guizzetti, M., et al.: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensor. Actuat. A-Phys. 142, 329–335 (2008)CrossRef
13.
go back to reference Dhakar, L., Liu, H.C., Tayb, F.E.H., et al.: A new energy harvester design for high power output at low frequencies. Sensor. Actuat. 199, 344–352 (2013)CrossRef Dhakar, L., Liu, H.C., Tayb, F.E.H., et al.: A new energy harvester design for high power output at low frequencies. Sensor. Actuat. 199, 344–352 (2013)CrossRef
14.
go back to reference Challa, V.R., Prasad, M.G., Shi, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17(1), 015035 (2008)CrossRef Challa, V.R., Prasad, M.G., Shi, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17(1), 015035 (2008)CrossRef
15.
go back to reference Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292(3), 987–998 (2006)MathSciNetCrossRef Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292(3), 987–998 (2006)MathSciNetCrossRef
16.
go back to reference Jemai, A., Najar, F., Chafra, M., et al.: Modeling and parametric analysis of a unimorph piezocomposite energy harvester with interdigitated electrodes. Compos. Struct. 135, 176–190 (2016)CrossRef Jemai, A., Najar, F., Chafra, M., et al.: Modeling and parametric analysis of a unimorph piezocomposite energy harvester with interdigitated electrodes. Compos. Struct. 135, 176–190 (2016)CrossRef
17.
go back to reference Xie, X.D., Wang, Q.: A study on a high efficient cylinder composite piezoelectric energy harvester. Compos. Struct. 161, 237–245 (2017)CrossRef Xie, X.D., Wang, Q.: A study on a high efficient cylinder composite piezoelectric energy harvester. Compos. Struct. 161, 237–245 (2017)CrossRef
18.
go back to reference Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)CrossRef Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)CrossRef
19.
go back to reference Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)CrossRef Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)CrossRef
20.
go back to reference Zhou, S., Cao, J., Lin, J., et al.: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys. 67(3), 30902 (2014)CrossRef Zhou, S., Cao, J., Lin, J., et al.: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys. 67(3), 30902 (2014)CrossRef
21.
go back to reference Zhou, Z., Qin, W., Zhu, P.: Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sensor. Actuat. A-Phys. 243, 151–158 (2016)CrossRef Zhou, Z., Qin, W., Zhu, P.: Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sensor. Actuat. A-Phys. 243, 151–158 (2016)CrossRef
22.
go back to reference Pellegrini, S.P., Tolou, N., Schenk, M., et al.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2013)CrossRef Pellegrini, S.P., Tolou, N., Schenk, M., et al.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2013)CrossRef
23.
go back to reference Zhou, S.X., Cao, J.Y., Wang, W., et al.: Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration. Smart Mater. Struct. 24(5), 055008 (2015)CrossRef Zhou, S.X., Cao, J.Y., Wang, W., et al.: Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration. Smart Mater. Struct. 24(5), 055008 (2015)CrossRef
24.
go back to reference Zhang, Y.W., Su, C., Ni, Z.Y., et al.: A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Compos. Struct. 221, 110875 (2019)CrossRef Zhang, Y.W., Su, C., Ni, Z.Y., et al.: A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Compos. Struct. 221, 110875 (2019)CrossRef
25.
go back to reference Ferrari, M., Bau, M., Guizzetti, M., et al.: A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations. Sensor. Actuat. A-Phys. 172(1), 287–292 (2011)CrossRef Ferrari, M., Bau, M., Guizzetti, M., et al.: A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations. Sensor. Actuat. A-Phys. 172(1), 287–292 (2011)CrossRef
26.
go back to reference Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329(9), 1215–1226 (2010)CrossRef Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329(9), 1215–1226 (2010)CrossRef
27.
go back to reference Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239, 640–653 (2010)MATHCrossRef Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239, 640–653 (2010)MATHCrossRef
28.
go back to reference Panyam, M., Masana, R., Daqaq, M.F.: On approximating the effective bandwidth of bi-stable energy harvesters. Int. J. Non. Linear. Mech. 67, 153–163 (2014)CrossRef Panyam, M., Masana, R., Daqaq, M.F.: On approximating the effective bandwidth of bi-stable energy harvesters. Int. J. Non. Linear. Mech. 67, 153–163 (2014)CrossRef
29.
go back to reference Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)CrossRef Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)CrossRef
30.
go back to reference Su, W.J., Zu, J.W.: Design and development of a novel bi-directional piezoelectric energy harvester. Smart Mater. Struct. 23(9), 095012 (2014)CrossRef Su, W.J., Zu, J.W.: Design and development of a novel bi-directional piezoelectric energy harvester. Smart Mater. Struct. 23(9), 095012 (2014)CrossRef
31.
go back to reference Yao, M.H., Li, Y.B., Zhang, W.: The steady-state response analysis of bistable piezoelectric converter. Appl. Mech. Mater. 775, 301–306 (2015)CrossRef Yao, M.H., Li, Y.B., Zhang, W.: The steady-state response analysis of bistable piezoelectric converter. Appl. Mech. Mater. 775, 301–306 (2015)CrossRef
32.
go back to reference Balachandran, B., Nayfeh, A.H.: Nonlinear motions of beam-mass structure. Nonlinear Dyn. 1(1), 39–61 (1990)CrossRef Balachandran, B., Nayfeh, A.H.: Nonlinear motions of beam-mass structure. Nonlinear Dyn. 1(1), 39–61 (1990)CrossRef
33.
go back to reference Onozato, N., Nagai, K.I., Maruyama, S., et al.: Chaotic vibrations of a post-buckled L-shaped beam with an axial constraint. Nonlinear Dyn. 67(4), 2363–2379 (2012)MathSciNetMATHCrossRef Onozato, N., Nagai, K.I., Maruyama, S., et al.: Chaotic vibrations of a post-buckled L-shaped beam with an axial constraint. Nonlinear Dyn. 67(4), 2363–2379 (2012)MathSciNetMATHCrossRef
34.
go back to reference Georgiades, F., Warminski, J., Cartmell, M.P.: Towards linear modal analysis for an L-shaped beam: equations of motion. Mech. Res. Commun. 47(3), 50–60 (2013)CrossRef Georgiades, F., Warminski, J., Cartmell, M.P.: Towards linear modal analysis for an L-shaped beam: equations of motion. Mech. Res. Commun. 47(3), 50–60 (2013)CrossRef
35.
go back to reference Cao, D.X., Zhang, W., Yao, M.H.: Analytical and experimental studies on nonlinear characteristics of an L-shape beam structure. Acta. Mech. Sin. 26, 967–976 (2010)MathSciNetMATHCrossRef Cao, D.X., Zhang, W., Yao, M.H.: Analytical and experimental studies on nonlinear characteristics of an L-shape beam structure. Acta. Mech. Sin. 26, 967–976 (2010)MathSciNetMATHCrossRef
36.
go back to reference Erturk, A., Renon, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20(5), 529–544 (2009)CrossRef Erturk, A., Renon, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20(5), 529–544 (2009)CrossRef
37.
go back to reference Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224(14–15), 2867–2880 (2015)CrossRef Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224(14–15), 2867–2880 (2015)CrossRef
38.
go back to reference Chen, L.Q., Jiang, W.A., Panyam, M., et al.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138(6), 061007 (2016)CrossRef Chen, L.Q., Jiang, W.A., Panyam, M., et al.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138(6), 061007 (2016)CrossRef
39.
go back to reference Zhou, D.D.: Experimental study of several kinds of piezoelectric cantilever beam structure. Master Thesis. Beijing University of Technology. (2014) Zhou, D.D.: Experimental study of several kinds of piezoelectric cantilever beam structure. Master Thesis. Beijing University of Technology. (2014)
40.
go back to reference Yao, M.H., Ma, L., Zhang, W.: Study on power generations and dynamic responses of the bistable straight beam and the bistable L-shaped beam. Sci. China Technol. Sci. 61(9), 1404–1416 (2018)CrossRef Yao, M.H., Ma, L., Zhang, W.: Study on power generations and dynamic responses of the bistable straight beam and the bistable L-shaped beam. Sci. China Technol. Sci. 61(9), 1404–1416 (2018)CrossRef
Metadata
Title
Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam
Authors
Minghui Yao
Pengfei Liu
Li Ma
Hongbo Wang
Wei Zhang
Publication date
03-06-2020
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2020
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00956-1

Other articles of this Issue 3/2020

Acta Mechanica Sinica 3/2020 Go to the issue

Premium Partners