Skip to main content
Top
Published in: Bulletin of Engineering Geology and the Environment 3/2020

09-11-2019 | Original Paper

Experimental study on debris flow initiation

Authors: Xiaoli Liu, Fang Wang, Kumar Nawnit, Xiangfeng Lv, Sijing Wang

Published in: Bulletin of Engineering Geology and the Environment | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper investigates the initiation mechanism of debris flow through the survey with detailed analysis for several field debris flow events. The field investigation shows that the debris flow evolution includes distinct three stages: the soil structure changes and forms slide debris, slide debris mobilizes into debris flow, and the debris flow slips a long distance along the slope. In order to reappear and explain the aforementioned phenomenon existing in the initiation procedure of debris flow, the vane shear rheometer device is developed to test the shear rheology properties of debris source. Subsequently, the shear rheological tests with water drained out are performed utilizing the fine sand as tested material. A series of tests are performed and experimental data are obtained including the shear strain, negative pressure, water content, shear velocity, shear resistance, pore water pressure, and line displacements on the shear surface. Based on the changes of water content and negative pressure, the unsaturated permeability coefficients are obtained to explain the water-free infiltration process in the tests. According to the changes of shear velocity and experimental phenomena, the debris flow evolution is divided into three stages including the antecedent rainfall stage, accelerated initiation stage, and long-distance movement stage, which is similar to the three corresponding stages existing in the filed debris flow events. According to the analysis of test results, the mechanics of the debris flow initiation could be explained as the following: the debris source’s shear strength decreased to the value of yield shear strength, the peak shear strength available during undrained loading of a saturated, contractive, sandy soil, after a long period of antecedent rainfall infiltration. The tiny cracks expended to form connecting crack surfaces in the debris source interior, and then the debris source moves rapidly under the continuous rainfall, indicating the debris flow initiation. During the long-distance movement stage, the particles of debris source on the shear surface rearrange and form a smooth slide surface as the values of water content and pore water pressure increase. Therefore, the increase of water content and the decrease of negative pressure caused the soil shear strength decaying, and that is the major reasons of debris flow initiation. In addition, the other key reason is the particles rearranging on the initiation surfaces. The vane shear rheometer apparatus and corresponding test results have provided a more concrete and rational mechanism interpretation for debris flow initiation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bogaard TA, Greco R (2016) Landslide hydrology: from hydrology to pore pressure. WIREs Water 3:439–459 Bogaard TA, Greco R (2016) Landslide hydrology: from hydrology to pore pressure. WIREs Water 3:439–459
go back to reference Bordoni M, Meisina C, Zizioli D, Valentino R, Bittelli M, Chersich S (2014) Rainfall-induced landslides: slope stability analysis through field monitoring. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Cham Bordoni M, Meisina C, Zizioli D, Valentino R, Bittelli M, Chersich S (2014) Rainfall-induced landslides: slope stability analysis through field monitoring. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Cham
go back to reference Bordoni M, Meisina C, Valentino R, Lu N, Bittelli M, Chersich S (2015) Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Eng Geol 193:19–37 Bordoni M, Meisina C, Valentino R, Lu N, Bittelli M, Chersich S (2015) Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Eng Geol 193:19–37
go back to reference Chang M, Tang C, Ni HY, Qu YP (2015) Evolution process of sediment supply for debris flow occurrence in the Longchi area of Dujiangyan City after the Wenchuan earthquake. Landslides 12(3):611–623 Chang M, Tang C, Ni HY, Qu YP (2015) Evolution process of sediment supply for debris flow occurrence in the Longchi area of Dujiangyan City after the Wenchuan earthquake. Landslides 12(3):611–623
go back to reference Chen XQ, Cui P, Feng ZL, Chen J, Li Y (2006) Artificial rainfall experimental study on landslide translation to debris flow. Chin J Rock Mech Eng 25(1):106–116 (in Chinese) Chen XQ, Cui P, Feng ZL, Chen J, Li Y (2006) Artificial rainfall experimental study on landslide translation to debris flow. Chin J Rock Mech Eng 25(1):106–116 (in Chinese)
go back to reference Chen NS, Zhou W, Yang CL, Hu GS, Gao YC, Han D (2010a) The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content. Geomorphology 121:222–230 Chen NS, Zhou W, Yang CL, Hu GS, Gao YC, Han D (2010a) The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content. Geomorphology 121:222–230
go back to reference Chen ZX, Wang R, Hu MJ, Wang ZB, Xu DS (2010b) Study of content of clay particles for debris flow occurrence in Jiangjia ravine. Rock and Soil Mechanics 31(7):2197–2201 3655.(in Chinese) Chen ZX, Wang R, Hu MJ, Wang ZB, Xu DS (2010b) Study of content of clay particles for debris flow occurrence in Jiangjia ravine. Rock and Soil Mechanics 31(7):2197–2201 3655.(in Chinese)
go back to reference Chiara D (2009) Pore water pressure contribution to debris flow mobility. Am J Environ Sci 5(4):486–492 Chiara D (2009) Pore water pressure contribution to debris flow mobility. Am J Environ Sci 5(4):486–492
go back to reference Chinese Academy of Sciences (2000) Debris flow in China. The Commercial Press, Beijing (in Chinese) Chinese Academy of Sciences (2000) Debris flow in China. The Commercial Press, Beijing (in Chinese)
go back to reference Childs EC (1948) The permeability of porous materials. Proceedings of the Royal Society of London. Series A. 201: 392–405 Childs EC (1948) The permeability of porous materials. Proceedings of the Royal Society of London. Series A. 201: 392–405
go back to reference Cui P (1990) Mechanism debris flow initiation study. Beijing Forestry University, Beijing (in Chinese) Cui P (1990) Mechanism debris flow initiation study. Beijing Forestry University, Beijing (in Chinese)
go back to reference Cui P, Yang K, Chen J (2003) Relationship between occurrence of debris flow and antecedent precipitation: taking the Jiangjia gully as an example. Science of Soil and Water Conservation 1(1):12–15 (in Chinese) Cui P, Yang K, Chen J (2003) Relationship between occurrence of debris flow and antecedent precipitation: taking the Jiangjia gully as an example. Science of Soil and Water Conservation 1(1):12–15 (in Chinese)
go back to reference D'Agostino V, Cesca M, Marchi L (2010) Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115:294–304 D'Agostino V, Cesca M, Marchi L (2010) Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115:294–304
go back to reference Eger PM, Cagliari J, Aquino CD, Coelho OGW (2018) Rheologic survey of mass transport events from the geologic record of an Andean Precordilleran slope. Geomorphology 315:57–67 Eger PM, Cagliari J, Aquino CD, Coelho OGW (2018) Rheologic survey of mass transport events from the geologic record of an Andean Precordilleran slope. Geomorphology 315:57–67
go back to reference Engel Z, Česák J, Escobar VR (2011) Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 8(3):269–278 Engel Z, Česák J, Escobar VR (2011) Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 8(3):269–278
go back to reference Fredlund DG, Morgenstern NR, Widger RA (1978) Shear strength of unsaturated soils. Canadian Geotechnical Journal 15(3):313–321 Fredlund DG, Morgenstern NR, Widger RA (1978) Shear strength of unsaturated soils. Canadian Geotechnical Journal 15(3):313–321
go back to reference Emmanuel JG, Simon MM (2006) The mobilization of debris flows from shallow landslides. Geomorphology 74:207–218 Emmanuel JG, Simon MM (2006) The mobilization of debris flows from shallow landslides. Geomorphology 74:207–218
go back to reference George DL, Iverson RM (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proc. R. Soc. A 470: 20130820 George DL, Iverson RM (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proc. R. Soc. A 470: 20130820
go back to reference Ghiassian H, Ghareh S (2008) Stability of sandy slopes under seepage conditions. Landslides 5:397–406 Ghiassian H, Ghareh S (2008) Stability of sandy slopes under seepage conditions. Landslides 5:397–406
go back to reference Graterol M J (2011) The relevance of the yield shear strength of plastic clays as the boundary between elastic and progressive plastic settlement of foundations. 2011 Pan-Am CGS geotechnical conference - the 14th Pan-American conference on soil mechanics and geotechnical engineering and the 64th Canadian geotechnical conference, October 2–6, 2011, Toronto, Ontario, Canada Graterol M J (2011) The relevance of the yield shear strength of plastic clays as the boundary between elastic and progressive plastic settlement of foundations. 2011 Pan-Am CGS geotechnical conference - the 14th Pan-American conference on soil mechanics and geotechnical engineering and the 64th Canadian geotechnical conference, October 2–6, 2011, Toronto, Ontario, Canada
go back to reference Guan YP, Liu XL, Wang EZ, Wang SJ (2017) The stability analysis method of the cohesive granular slope on the basis of graph theory. Materials 10(3):240 Guan YP, Liu XL, Wang EZ, Wang SJ (2017) The stability analysis method of the cohesive granular slope on the basis of graph theory. Materials 10(3):240
go back to reference Huang Y, Zhang YJ, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2):275–283 Huang Y, Zhang YJ, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2):275–283
go back to reference Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194 Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194
go back to reference Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudslide and other mass movements. Geotechique 21(4):353–358 Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudslide and other mass movements. Geotechique 21(4):353–358
go back to reference Ilstad T, Marr JG, Anders E, Harbitz CB (2004) Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Mar Geol 213:403–414 Ilstad T, Marr JG, Anders E, Harbitz CB (2004) Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Mar Geol 213:403–414
go back to reference Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296 Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296
go back to reference Iverson RM, George DL (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A 470:20130819 Iverson RM, George DL (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A 470:20130819
go back to reference Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138 Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138
go back to reference Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 4(2):116-121. Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 4(2):116-121.
go back to reference Kaitna R, Rickenmann D, Schatzmann M (2007) Experimental study on rheologic behaviour of debris flow material. Acta Geotech 2(2):71–85 Kaitna R, Rickenmann D, Schatzmann M (2007) Experimental study on rheologic behaviour of debris flow material. Acta Geotech 2(2):71–85
go back to reference Khalili N, Khabbaz MH (1998) A unique relationship for the determination of the shear strength of unsaturated soil. Geotechnique 48(5):681–687 Khalili N, Khabbaz MH (1998) A unique relationship for the determination of the shear strength of unsaturated soil. Geotechnique 48(5):681–687
go back to reference Liu ZG (2015) The mechanism of debris flow initiation experiment by shear rheometer experiment. Tsinghua University, Beijing (in Chinese) Liu ZG (2015) The mechanism of debris flow initiation experiment by shear rheometer experiment. Tsinghua University, Beijing (in Chinese)
go back to reference Liu XL, Wang SY (2012) Mine water inrush forecasting during the mining under waters. Disaster Advances 5(4):877–882 Liu XL, Wang SY (2012) Mine water inrush forecasting during the mining under waters. Disaster Advances 5(4):877–882
go back to reference Liu XL, Wang SY, Wang SJ, Wang EZ (2015) Fluid-driven fractures in granular materials. Bull Eng Geol Environ 74(2):621–636 Liu XL, Wang SY, Wang SJ, Wang EZ (2015) Fluid-driven fractures in granular materials. Bull Eng Geol Environ 74(2):621–636
go back to reference Liu XL, Han GF, Wang EZ, Wang SJ, Nawnit K (2018) Multiscale hierarchical analysis of rock mass and its mechanical and hydraulic properties prediction. Journal of rock mechanics and rock engineering 10(4):694–702 Liu XL, Han GF, Wang EZ, Wang SJ, Nawnit K (2018) Multiscale hierarchical analysis of rock mass and its mechanical and hydraulic properties prediction. Journal of rock mechanics and rock engineering 10(4):694–702
go back to reference Lu N, Godt JW (2008) Infinite slope stability under unsaturated seepage conditions. Water Resour Res 44:W11404 Lu N, Godt JW (2008) Infinite slope stability under unsaturated seepage conditions. Water Resour Res 44:W11404
go back to reference Lu N, Godt JW (2013) Hillslope hydrology and stability. Cambridge University Press, Cambridge Lu N, Godt JW (2013) Hillslope hydrology and stability. Cambridge University Press, Cambridge
go back to reference Lv QF, Liu XL, Wang EZ, Wang SJ (2013) Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers. Phys Rev E 88(1–1):013007 Lv QF, Liu XL, Wang EZ, Wang SJ (2013) Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers. Phys Rev E 88(1–1):013007
go back to reference Lv QF, Wang EZ, Liu XL, Wang SJ (2014) Determining the intrinsic permeability of tight porous media based on bivelocity hydrodynetics. Microfluid Nanofluid 16(5):841–848 Lv QF, Wang EZ, Liu XL, Wang SJ (2014) Determining the intrinsic permeability of tight porous media based on bivelocity hydrodynetics. Microfluid Nanofluid 16(5):841–848
go back to reference Major JJ (2000) Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics. J Sediment Res 70(1):64–83 Major JJ (2000) Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics. J Sediment Res 70(1):64–83
go back to reference Meng X, Wang Y (2015) Investigations of gravity-driven two-phase debris flows. In: Wu W (ed) Recent advances in modeling landslides and debris flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham Meng X, Wang Y (2015) Investigations of gravity-driven two-phase debris flows. In: Wu W (ed) Recent advances in modeling landslides and debris flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham
go back to reference Meunier PCM (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40(3–4):209–227 Meunier PCM (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40(3–4):209–227
go back to reference Osanai N, Shimizu T, Kuramoto K, Kojima S, Noro T (2010) Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides 7(3):325–338 Osanai N, Shimizu T, Kuramoto K, Kojima S, Noro T (2010) Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides 7(3):325–338
go back to reference Pan HL, Jiang YJ, Wang J, Ou GQ (2018) Rainfall threshold calculation for debris flow early warning in areas with scarcity of data. Nat Hazards Earth Syst Sci 18(5):1395–1409 Pan HL, Jiang YJ, Wang J, Ou GQ (2018) Rainfall threshold calculation for debris flow early warning in areas with scarcity of data. Nat Hazards Earth Syst Sci 18(5):1395–1409
go back to reference Reder A, Rianna G, Pagano L (2018) Physically based approaches incorporating evaporation for early warning predictions of rainfall-induced landslides. Nat Hazards Earth Syst Sci 18(2):613–631 Reder A, Rianna G, Pagano L (2018) Physically based approaches incorporating evaporation for early warning predictions of rainfall-induced landslides. Nat Hazards Earth Syst Sci 18(2):613–631
go back to reference Rianna G, Pagano L, Urciuoli G (2014) Rainfall patterns triggering shallow flowslides in pyroclastic soils. Eng Geol 174:22–35 Rianna G, Pagano L, Urciuoli G (2014) Rainfall patterns triggering shallow flowslides in pyroclastic soils. Eng Geol 174:22–35
go back to reference Sasahara K (2017) Prediction of the shear deformation of a sandy model slope generated by rainfall based on the monitoring of the shear strain and the pore pressure in the slope. Eng Geol 224:75–86 Sasahara K (2017) Prediction of the shear deformation of a sandy model slope generated by rainfall based on the monitoring of the shear strain and the pore pressure in the slope. Eng Geol 224:75–86
go back to reference Sassa K (1984) The mechanism starting liquefied landslides and debris flows. The 4th international symposium on landslides. International Society for Soil Mechanics and Foundation Engineering. Toronto, Ontario:[s. n.], 349–354 Sassa K (1984) The mechanism starting liquefied landslides and debris flows. The 4th international symposium on landslides. International Society for Soil Mechanics and Foundation Engineering. Toronto, Ontario:[s. n.], 349–354
go back to reference Sassa K (1998) Mechanisms of landslide triggered debris flow. Proceedings of IUFRO Conference (Div.8). Kyoto:Kluwer academic publishing, 471-490 Sassa K (1998) Mechanisms of landslide triggered debris flow. Proceedings of IUFRO Conference (Div.8). Kyoto:Kluwer academic publishing, 471-490
go back to reference Sassa K, Fukuoka H, Wang GH, Ishikawa N (2004) Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides 1(1):7–19 Sassa K, Fukuoka H, Wang GH, Ishikawa N (2004) Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides 1(1):7–19
go back to reference Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7(3):219–236 Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7(3):219–236
go back to reference Sassa K, Dang K, He B, Takara K, Inoue K, Nagai O (2014) A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan. Landslides 11(5):827–842 Sassa K, Dang K, He B, Takara K, Inoue K, Nagai O (2014) A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan. Landslides 11(5):827–842
go back to reference Scott MO, Benjamin BM (2007) Effects of mode of shear on yield shear strength of contractive sandy soils. 4th International conference on earthquake geotechnical engineering, Paper No. 1322, June 25–28, 2007 Scott MO, Benjamin BM (2007) Effects of mode of shear on yield shear strength of contractive sandy soils. 4th International conference on earthquake geotechnical engineering, Paper No. 1322, June 25–28, 2007
go back to reference Stock J, Dietrich WE (2003) Valley incision by debris flows: evidence of a topographic signature. Water Resour Res 39(4):1089 Stock J, Dietrich WE (2003) Valley incision by debris flows: evidence of a topographic signature. Water Resour Res 39(4):1089
go back to reference Stolz A, Huggel C (2008) Debris flows in the Swiss national park: the influence of different flow models and varying DEM grid size on modeling results. Landslides 5(3):311–319 Stolz A, Huggel C (2008) Debris flows in the Swiss national park: the influence of different flow models and varying DEM grid size on modeling results. Landslides 5(3):311–319
go back to reference Tang CC, Liang JT (2008) Characteristics of debris flow in Beichuan epicenter of the Wenchuan earthquake triggered by rain storm on September 24, 2008. J Eng Geol 16(6):751–758 (in Chinese) Tang CC, Liang JT (2008) Characteristics of debris flow in Beichuan epicenter of the Wenchuan earthquake triggered by rain storm on September 24, 2008. J Eng Geol 16(6):751–758 (in Chinese)
go back to reference Tang C, Zhang SC (2008) Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows. Advance in Earth Science 23(8):787–793 (in Chinese) Tang C, Zhang SC (2008) Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows. Advance in Earth Science 23(8):787–793 (in Chinese)
go back to reference Tang C, Zhu J, Ding J, Cui XFF, Chen L, Zhang JSS (2011) Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake. Landslides 8(4):485–497 Tang C, Zhu J, Ding J, Cui XFF, Chen L, Zhang JSS (2011) Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake. Landslides 8(4):485–497
go back to reference Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. John Wiley & Sons, Inc., New York Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. John Wiley & Sons, Inc., New York
go back to reference Turner AK, Schuster RL (1996) Landslides: investigation and mitigation. Transportation Research Board Special Report 247 Turner AK, Schuster RL (1996) Landslides: investigation and mitigation. Transportation Research Board Special Report 247
go back to reference Uzielli M, Rianna G, Ciervo F, Mercogliano P, Eidsvig UK (2018) Temporal evolution of flow-like landslide hazard for a road infrastructure in the municipality of Nocera Inferiore (southern Italy) under the effect of climate change. Nat Hazards Earth Syst Sci 18(11):3019–3035 Uzielli M, Rianna G, Ciervo F, Mercogliano P, Eidsvig UK (2018) Temporal evolution of flow-like landslide hazard for a road infrastructure in the municipality of Nocera Inferiore (southern Italy) under the effect of climate change. Nat Hazards Earth Syst Sci 18(11):3019–3035
go back to reference Wang SG (1999) Hazard of debris flow on slope and its control. The Chinese Journal of Geological Hazard and Control 10(3):45–50 (in Chinese) Wang SG (1999) Hazard of debris flow on slope and its control. The Chinese Journal of Geological Hazard and Control 10(3):45–50 (in Chinese)
go back to reference Wang G, Sassa K (2001) Factors affecting rainfall-induced flow slides in laboratory flume tests. Géotechnique 51(7):587–599 Wang G, Sassa K (2001) Factors affecting rainfall-induced flow slides in laboratory flume tests. Géotechnique 51(7):587–599
go back to reference Wang YY, Zou RY, Yan BY, Tao R (2000) Experimental research on prediction model of debris flow deposition. Journal of Natural Disasters 9(2):81–86 (in Chinese) Wang YY, Zou RY, Yan BY, Tao R (2000) Experimental research on prediction model of debris flow deposition. Journal of Natural Disasters 9(2):81–86 (in Chinese)
go back to reference Wang SG, Wang CH, Zhang JS, Que Y, Meng GC (2003) Debris flow hazards in Chayuan stream of Wenchuan County, Sichuan Province on August 9, 2003. J Mt Sci 21(5):635–637 (in Chinese) Wang SG, Wang CH, Zhang JS, Que Y, Meng GC (2003) Debris flow hazards in Chayuan stream of Wenchuan County, Sichuan Province on August 9, 2003. J Mt Sci 21(5):635–637 (in Chinese)
go back to reference Wei FQ, Xie H, Jose LL, David P (2000) Extraordinarily serious debris flow disasters in Venezuela in 1999. J Mt Sci 18(6):580–582 (in Chinese) Wei FQ, Xie H, Jose LL, David P (2000) Extraordinarily serious debris flow disasters in Venezuela in 1999. J Mt Sci 18(6):580–582 (in Chinese)
go back to reference Wei XF, Liu XL, Duan YL, Feng JM (2017) Property transformation of a modified sulfoaluminate grouting material under pressure circulation for a water-sealed underground oil cavern. Construction & Building Materials 140:210–220 Wei XF, Liu XL, Duan YL, Feng JM (2017) Property transformation of a modified sulfoaluminate grouting material under pressure circulation for a water-sealed underground oil cavern. Construction & Building Materials 140:210–220
go back to reference Wu LZ, Zhang LM, Zhou Y, Xu Q, Yu B, Liu GG, Bai LY (2018) Theoretical analysis and model test for rainfall-induced shallow landslides in the red-bed area of Sichuan. Bull Eng Geol Environ 77(4):1343–1353 Wu LZ, Zhang LM, Zhou Y, Xu Q, Yu B, Liu GG, Bai LY (2018) Theoretical analysis and model test for rainfall-induced shallow landslides in the red-bed area of Sichuan. Bull Eng Geol Environ 77(4):1343–1353
go back to reference Xu Q, Fan XM, Huang RQ, Yin YP, Hou SS, Dong XJ, Tang MG (2010) A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes. Landslides 7(1):75–87 Xu Q, Fan XM, Huang RQ, Yin YP, Hou SS, Dong XJ, Tang MG (2010) A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes. Landslides 7(1):75–87
go back to reference Xu Q, Fan XM, Dong XJ (2012) Characteristics and formation mechanism of a catastrophic rainfall–induced rock avalanche–mud flow in Sichuan, China, 2010. Landslides 9(1):143–154 Xu Q, Fan XM, Dong XJ (2012) Characteristics and formation mechanism of a catastrophic rainfall–induced rock avalanche–mud flow in Sichuan, China, 2010. Landslides 9(1):143–154
go back to reference Xue Q, Feng XT, Liu L, Chen YJ, Liu XL (2013) Evaluation of pavement straw composite fiber on SMA pavement performances. Construction & Building Materials 41(41):834–843 Xue Q, Feng XT, Liu L, Chen YJ, Liu XL (2013) Evaluation of pavement straw composite fiber on SMA pavement performances. Construction & Building Materials 41(41):834–843
go back to reference Yin YP, Wang FW, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152 Yin YP, Wang FW, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152
go back to reference Yin YP, Sun P, Zhu JL, Yang SY (2011) Research on catastrophic rock avalanche at Guanling, Guizhou, China. Landslides 8(4):517–525 Yin YP, Sun P, Zhu JL, Yang SY (2011) Research on catastrophic rock avalanche at Guanling, Guizhou, China. Landslides 8(4):517–525
go back to reference Yu Y, Wang EZ, Zhong JW, Liu XL, Li PH, Shi M, Zhang ZG (2014) Stability analysis of abutment slopes based on long-term monitoring and numerical simulation. Eng Geol 183:159–169 Yu Y, Wang EZ, Zhong JW, Liu XL, Li PH, Shi M, Zhang ZG (2014) Stability analysis of abutment slopes based on long-term monitoring and numerical simulation. Eng Geol 183:159–169
go back to reference Zhang M, Yin YP, Hu RL, Wu SR, Zhang YS (2011) Ring shear test for transform mechanism of slide-debris flow. Eng Geol 118:55–62 Zhang M, Yin YP, Hu RL, Wu SR, Zhang YS (2011) Ring shear test for transform mechanism of slide-debris flow. Eng Geol 118:55–62
go back to reference Zhou W, Tang C (2014) Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides 11(5):877–887 Zhou W, Tang C (2014) Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides 11(5):877–887
Metadata
Title
Experimental study on debris flow initiation
Authors
Xiaoli Liu
Fang Wang
Kumar Nawnit
Xiangfeng Lv
Sijing Wang
Publication date
09-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 3/2020
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-019-01618-8

Other articles of this Issue 3/2020

Bulletin of Engineering Geology and the Environment 3/2020 Go to the issue