Skip to main content
Top
Published in: Journal of Materials Science 16/2017

09-05-2017 | Energy materials

Exploring electronic properties and NO gas sensitivity of Si-doped SW-BNNTs under axial tensile strain

Authors: Hossein Roohi, Layla Maleki, Maryam Erfani Moradzadeh

Published in: Journal of Materials Science | Issue 16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Continuously tuning electronic and magnetic properties of nanomaterials specially by applying an axial tensile strain is a promising route for construction of impending electronic and optoelectronic nanodevices. In the present work, Si doping and axial tensile strain were simultaneously utilized in exploring the structural and electronic properties of single-walled (6,0) Si N , Si B and Si N,B -doped Stone–Wales defective boron nitride nanotubes at M05-2X/6–31+G(d) level. Our findings demonstrate that the Si doping of SW-BNNT destroys the hexagonal BN network and alters the insulating feature of the SW-BNNT. Binding energies of Si-doped SW-BNNTs are estimated to be smaller than un-doped SW-BNNT and decrease continuously upon axial tensile strain. It can be estimated that the Si-doped SW–BNNTs and, in turn, their axial strained forms are more suitable than SW-BNNT one for photoconductivity applications. The unstrained Si N,B has a lower band gap than unstrained Si N and Si B . The results show that the axial tensile strain is not a suitable strategy to improve the conductivity of Si N,B , contrary to those found in Si N and Si B . In the second part of this work, sensitivity of strained and unstrained Si-doped SW-BNNTs toward NO gas is evaluated. The results show that the chemical adsorption of NO is thermodynamically favored in both strained and unstrained forms. Among the Si-doped SW-BNNT–NO complexes, Si N,B -ON1 and Si B -NO2 complexes with adsorption energy of −32.7 and −33.3 kcal mol−1, respectively, are thermodynamically more stable than other complexes. In addition, dispersion-corrected adsorption energies were evaluated at M05-2X-D3/6-31++G(d,p)//M05-2X/6–31+G(d) level of theory. The greatest charge transfer value and change in the band gap upon adsorption was predicted in all complexes. Thus, it is expected that Si-doped SW-BNNT could be a favorable NT for removing and sensing the NO gas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49(7):5081–5084CrossRef Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49(7):5081–5084CrossRef
2.
go back to reference Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(269):966–967CrossRef Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(269):966–967CrossRef
3.
go back to reference Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Boron nitride nanotubes. Nature 391:59CrossRef Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Boron nitride nanotubes. Nature 391:59CrossRef
4.
go back to reference Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335CrossRef Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335CrossRef
5.
go back to reference Fuentes GG, Borowiak-Palen E, Pichler T, Liu X, Gra A, Behr G, Kalenczuk J, Knupfer M, Fink J (2003) Electronic structure of multiwall boron nitride nanotubes. Phys Rev B 67(3):035429CrossRef Fuentes GG, Borowiak-Palen E, Pichler T, Liu X, Gra A, Behr G, Kalenczuk J, Knupfer M, Fink J (2003) Electronic structure of multiwall boron nitride nanotubes. Phys Rev B 67(3):035429CrossRef
6.
go back to reference Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R 70:92–111CrossRef Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R 70:92–111CrossRef
7.
go back to reference Freitas A, Azevedo S, Kaschny JR (2013) Effects of a transverse electric field on the electronic properties of single- and multi-wall BN nanotubes. Solid State Commun 153:40–45CrossRef Freitas A, Azevedo S, Kaschny JR (2013) Effects of a transverse electric field on the electronic properties of single- and multi-wall BN nanotubes. Solid State Commun 153:40–45CrossRef
8.
go back to reference Roohi H, Bagheri S (2013) Effect of axial strain on structural and electronic properties of zig-zag type of boron nitride nanotube (BNNT): a quantum chemical study. Struct Chem 24(1):409–420CrossRef Roohi H, Bagheri S (2013) Effect of axial strain on structural and electronic properties of zig-zag type of boron nitride nanotube (BNNT): a quantum chemical study. Struct Chem 24(1):409–420CrossRef
9.
go back to reference Zhukovskii YF, Piskunov S, Begens J, Kazerovskis J, Lisovski O (2013) First-principles calculations of point defects in inorganic nanotubes. Phys Status Solidi 250:793–800CrossRef Zhukovskii YF, Piskunov S, Begens J, Kazerovskis J, Lisovski O (2013) First-principles calculations of point defects in inorganic nanotubes. Phys Status Solidi 250:793–800CrossRef
10.
go back to reference Silva L, Guerini S, Lemos V, Filho J (2006) Electronic and structural properties of oxygen doped BN nanotubes. IEEE Trans Nanotechnol 5:517–522CrossRef Silva L, Guerini S, Lemos V, Filho J (2006) Electronic and structural properties of oxygen doped BN nanotubes. IEEE Trans Nanotechnol 5:517–522CrossRef
11.
go back to reference Liu H, Turner CH (2014) Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes. Phys Chem Chem Phys 16:22853–22860CrossRef Liu H, Turner CH (2014) Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes. Phys Chem Chem Phys 16:22853–22860CrossRef
12.
go back to reference Zhao JX, Ding YH (2008) Theoretical study of Ni adsorption on single-walled boron nitride nanotubes with intrinsic defects. J Phys Chem C 112:5778–5783CrossRef Zhao JX, Ding YH (2008) Theoretical study of Ni adsorption on single-walled boron nitride nanotubes with intrinsic defects. J Phys Chem C 112:5778–5783CrossRef
13.
go back to reference Xie Y, Zhang JM (2011) First-principles study on substituted doping of BN nanotubes by transition metals V, Cr and Mn. Comput Theor Chem 976:215–220CrossRef Xie Y, Zhang JM (2011) First-principles study on substituted doping of BN nanotubes by transition metals V, Cr and Mn. Comput Theor Chem 976:215–220CrossRef
14.
go back to reference Tang C, Bando Y, Huang Y, Yue SL, Gu CZ, Xu FF (2005) Fluorination and electrical conductivity of BN nanotubes. J Am Chem Soc 127:6552–6553CrossRef Tang C, Bando Y, Huang Y, Yue SL, Gu CZ, Xu FF (2005) Fluorination and electrical conductivity of BN nanotubes. J Am Chem Soc 127:6552–6553CrossRef
15.
go back to reference Stephan O, Ajayan PM, Colliex C, Redlich P, Lambert JM, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1683–1685CrossRef Stephan O, Ajayan PM, Colliex C, Redlich P, Lambert JM, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1683–1685CrossRef
16.
go back to reference Golberg D, Bando Y, Dorozhkin P, Dong ZC (2004) Synthesis, analysis, and electrical property measurements of compound nanotubes in the B-C-N ceramic system. MRS Bull 29:38–42CrossRef Golberg D, Bando Y, Dorozhkin P, Dong ZC (2004) Synthesis, analysis, and electrical property measurements of compound nanotubes in the B-C-N ceramic system. MRS Bull 29:38–42CrossRef
17.
go back to reference Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430–435CrossRef Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430–435CrossRef
18.
go back to reference Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574CrossRef Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574CrossRef
19.
go back to reference Wei X, Wang M, Bando Y, Golberg D (2010) Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. J Am Chem Soc 132:13592–13593CrossRef Wei X, Wang M, Bando Y, Golberg D (2010) Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. J Am Chem Soc 132:13592–13593CrossRef
20.
go back to reference Wei X, Wang M, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5:2916–2922CrossRef Wei X, Wang M, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5:2916–2922CrossRef
21.
go back to reference Tontapha S, Morakot N, Ruangpornvisuti V, Wanno B (2012) Geometries and stabilities of transition metals doped perfect and Stone-Wales defective armchair (5,5) boron nitride nanotubes. Struct Chem 23:1819–1830CrossRef Tontapha S, Morakot N, Ruangpornvisuti V, Wanno B (2012) Geometries and stabilities of transition metals doped perfect and Stone-Wales defective armchair (5,5) boron nitride nanotubes. Struct Chem 23:1819–1830CrossRef
22.
go back to reference Roohi H, Jahantab M, Rahmdel Delcheh S, Pakdel Khoshakhlagh B (2015) Chemical functionalization of boron nitride nanotube via the 1,3-dipolar cycloaddition reaction of azomethine ylide: a quantum chemical study. Struct Chem 26:749–759CrossRef Roohi H, Jahantab M, Rahmdel Delcheh S, Pakdel Khoshakhlagh B (2015) Chemical functionalization of boron nitride nanotube via the 1,3-dipolar cycloaddition reaction of azomethine ylide: a quantum chemical study. Struct Chem 26:749–759CrossRef
23.
go back to reference Roohi H, Khyrkhah S (2015) Green chemical functionalization of single-wall carbon nanotube with methylimidazolium dicyanamid ionic liquid: a first principle computational exploration. J Mol Liq 211:498–505CrossRef Roohi H, Khyrkhah S (2015) Green chemical functionalization of single-wall carbon nanotube with methylimidazolium dicyanamid ionic liquid: a first principle computational exploration. J Mol Liq 211:498–505CrossRef
24.
go back to reference Roohi H, Maleki L (2016) Effects of C1-3-doping on electronic and structural properties of stone wales defective boron nitride nanotubes as well as their NO gas sensitivity. RSC Adv 6:11353–11369CrossRef Roohi H, Maleki L (2016) Effects of C1-3-doping on electronic and structural properties of stone wales defective boron nitride nanotubes as well as their NO gas sensitivity. RSC Adv 6:11353–11369CrossRef
25.
go back to reference Kim G, Park J, Hung S (2012) First principle study of substitutional carbon pair and Ston-Wals defect complexes in boron nitride nanotubes. Chem Phys Lett 522:79–82CrossRef Kim G, Park J, Hung S (2012) First principle study of substitutional carbon pair and Ston-Wals defect complexes in boron nitride nanotubes. Chem Phys Lett 522:79–82CrossRef
26.
go back to reference Chen YK, Liu LV, Wang YA (2010) Density functional study of interaction of atomic Pt with pristine and stone-wales-defective single-walled boron nitride nanotubes. J Phys Chem C 114:12382–12388CrossRef Chen YK, Liu LV, Wang YA (2010) Density functional study of interaction of atomic Pt with pristine and stone-wales-defective single-walled boron nitride nanotubes. J Phys Chem C 114:12382–12388CrossRef
27.
go back to reference Wang R, Zhu R, Zhang D (2008) Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett 467:131–135CrossRef Wang R, Zhu R, Zhang D (2008) Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett 467:131–135CrossRef
28.
go back to reference Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503CrossRef Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503CrossRef
29.
go back to reference Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22CrossRef Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22CrossRef
30.
go back to reference Dumitrica T, Yakobson BI (2005) Rate theory of yield in boron nitride nanotubes. Phys Rev B 72:035418CrossRef Dumitrica T, Yakobson BI (2005) Rate theory of yield in boron nitride nanotubes. Phys Rev B 72:035418CrossRef
31.
go back to reference Choi J, Pyo S, Baek DH, Lee JI, Kim J (2014) Thickness, alignment and defect tunable growth of carbon nanotube arrays using designed mechanical loads. Carbon 66:126–133CrossRef Choi J, Pyo S, Baek DH, Lee JI, Kim J (2014) Thickness, alignment and defect tunable growth of carbon nanotube arrays using designed mechanical loads. Carbon 66:126–133CrossRef
32.
go back to reference Miyamoto Y, Rubio A, Berber S, Yoon M, Toanek D (2004) Spectroscopic characterization of Stone-Wales defects in nanotubes. Phys Rev B 691:21413 Miyamoto Y, Rubio A, Berber S, Yoon M, Toanek D (2004) Spectroscopic characterization of Stone-Wales defects in nanotubes. Phys Rev B 691:21413
33.
go back to reference Bettinger HF, Dumitrica T, Scuseria GE, Yakobson BI (2002) Mechanically induced defects and strength of BN nanotubes. Phys Rev B 65:041406CrossRef Bettinger HF, Dumitrica T, Scuseria GE, Yakobson BI (2002) Mechanically induced defects and strength of BN nanotubes. Phys Rev B 65:041406CrossRef
34.
go back to reference Roohi H, Jahantab M, Yakta M (2015) Effect of the Stone-Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct Chem 26:11–22CrossRef Roohi H, Jahantab M, Yakta M (2015) Effect of the Stone-Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct Chem 26:11–22CrossRef
35.
go back to reference Li Y, Zhou Z, Golberg D, Bando Y, von Rague Scheyer P, Chen Z (2008) Stone-Wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J Phys Chem C 112:1365–1370CrossRef Li Y, Zhou Z, Golberg D, Bando Y, von Rague Scheyer P, Chen Z (2008) Stone-Wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J Phys Chem C 112:1365–1370CrossRef
36.
go back to reference An W, Wu X, Yang JL, Zeng XC (2007) Adsorption and surface reactivity on single-walled boron nitride nanotubes containing Stone-Wales defects. J Phys Chem C 111:14105–14112CrossRef An W, Wu X, Yang JL, Zeng XC (2007) Adsorption and surface reactivity on single-walled boron nitride nanotubes containing Stone-Wales defects. J Phys Chem C 111:14105–14112CrossRef
37.
go back to reference Umadevi P, Aiswarya T, Senthilkumar L (2015) Encapsulation of fluoroethanols in pristine and Stone-Wales defect boron nitride nanotube—A DFT study. Appl Surf Sci 345:369–378CrossRef Umadevi P, Aiswarya T, Senthilkumar L (2015) Encapsulation of fluoroethanols in pristine and Stone-Wales defect boron nitride nanotube—A DFT study. Appl Surf Sci 345:369–378CrossRef
38.
go back to reference Tabtimsai C, Nonsri A, Gratoo N, Massiri N, Suvanvapee P, Wanno B (2014) Carbon monoxide adsorption on carbon atom doped perfect and Stone-Wales defect single-walled boron nitride nanotubes: a DFT investigation. Monatsh Chem 145:725–735CrossRef Tabtimsai C, Nonsri A, Gratoo N, Massiri N, Suvanvapee P, Wanno B (2014) Carbon monoxide adsorption on carbon atom doped perfect and Stone-Wales defect single-walled boron nitride nanotubes: a DFT investigation. Monatsh Chem 145:725–735CrossRef
39.
go back to reference Gupta SK, He H, Banyai D, Si M, Pandey R, Karna SP (2014) Effect of Si doping on the electronic properties of BN monolayer. Nanoscale 6:5526–5531CrossRef Gupta SK, He H, Banyai D, Si M, Pandey R, Karna SP (2014) Effect of Si doping on the electronic properties of BN monolayer. Nanoscale 6:5526–5531CrossRef
40.
go back to reference Wei X, Wang MS, Bando Y, Golberg D (2010) Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater 22:4895–4899CrossRef Wei X, Wang MS, Bando Y, Golberg D (2010) Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater 22:4895–4899CrossRef
41.
go back to reference Liao ML, Wang YC, Ju SP, Lien TW, Huang LF (2011) Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains. J Appl Phys 110:054310CrossRef Liao ML, Wang YC, Ju SP, Lien TW, Huang LF (2011) Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains. J Appl Phys 110:054310CrossRef
42.
go back to reference Ge C, Li X, Dong J (2011) Electronic structures of deformed B2C nanotubes under tensile strain. Phys E 44:105–110CrossRef Ge C, Li X, Dong J (2011) Electronic structures of deformed B2C nanotubes under tensile strain. Phys E 44:105–110CrossRef
43.
go back to reference Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8,0) boron nitride nanotube: a first-principles study. Phys E 76:47–51CrossRef Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8,0) boron nitride nanotube: a first-principles study. Phys E 76:47–51CrossRef
44.
go back to reference Lin S, Ye X, Huang J (2015) Can metal-free silicon-doped hexagonal boron nitride nanosheet and nanotube exhibit activity toward CO oxidation? Phys Chem Chem Phys 17:888–895CrossRef Lin S, Ye X, Huang J (2015) Can metal-free silicon-doped hexagonal boron nitride nanosheet and nanotube exhibit activity toward CO oxidation? Phys Chem Chem Phys 17:888–895CrossRef
45.
go back to reference Esrafili MD, Saeidi N (2015) Si-embedded boron-nitride nanotubes as an efficient and metal-free catalyst for NO oxidation. Superlattices Microstruct 81:7–15CrossRef Esrafili MD, Saeidi N (2015) Si-embedded boron-nitride nanotubes as an efficient and metal-free catalyst for NO oxidation. Superlattices Microstruct 81:7–15CrossRef
46.
go back to reference Zhang J, Zhang Y, Pan Z, Yang S, Shi J, Li S, Min D, Li X, Wang X, Liu D, Yang A (2015) Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes. Appl Phys Lett 107:093104–093105CrossRef Zhang J, Zhang Y, Pan Z, Yang S, Shi J, Li S, Min D, Li X, Wang X, Liu D, Yang A (2015) Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes. Appl Phys Lett 107:093104–093105CrossRef
47.
go back to reference You X, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci 258:6391–6397CrossRef You X, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci 258:6391–6397CrossRef
48.
go back to reference Bezi Javan M (2015) Adsorption of CO and NO molecules on SiC nanotubes and nanocages. Surf Sci 635:128–142CrossRef Bezi Javan M (2015) Adsorption of CO and NO molecules on SiC nanotubes and nanocages. Surf Sci 635:128–142CrossRef
49.
go back to reference Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101CrossRef Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101CrossRef
50.
go back to reference Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRef Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRef
51.
go back to reference Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J. Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA Salvador P, Dan-nenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J. Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA Salvador P, Dan-nenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT
52.
go back to reference Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRef Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRef
53.
go back to reference Beer FP, Johnston ER, Dewolf JT (2006) Mechanics of materials, vol 54. McGraw-Hill Education, New York Beer FP, Johnston ER, Dewolf JT (2006) Mechanics of materials, vol 54. McGraw-Hill Education, New York
54.
go back to reference Lu T, Chen F (2012) A multifunctional wavefunction analyzer: multiwfn. J Comput Chem 33:580–592CrossRef Lu T, Chen F (2012) A multifunctional wavefunction analyzer: multiwfn. J Comput Chem 33:580–592CrossRef
55.
go back to reference Neamen DA (2011) Semiconductor physics and devices basic principles, vol 784, 4 th edn. McGraw-Hill, New York Neamen DA (2011) Semiconductor physics and devices basic principles, vol 784, 4 th edn. McGraw-Hill, New York
56.
go back to reference Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York
57.
go back to reference Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRef Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRef
58.
go back to reference Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep C 106:106–118 Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep C 106:106–118
59.
go back to reference Gyftopoulos EP, Hatsopoulos GN (1968) Quantum-thermodynamic definition of electronegativity. Proc Natl Acad Sci USA 60:786–793CrossRef Gyftopoulos EP, Hatsopoulos GN (1968) Quantum-thermodynamic definition of electronegativity. Proc Natl Acad Sci USA 60:786–793CrossRef
60.
go back to reference Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity-the density functional viewpoint. J Chem Phys 68:3801–3807CrossRef Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity-the density functional viewpoint. J Chem Phys 68:3801–3807CrossRef
61.
go back to reference Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRef Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRef
62.
go back to reference Parr RG, Szentpa´ly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRef Parr RG, Szentpa´ly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRef
63.
go back to reference Si MS, Xue DS (2006) First-principles study of silicon-doped (5,5) BN nanotubes. Europhys Lett 76:664–669CrossRef Si MS, Xue DS (2006) First-principles study of silicon-doped (5,5) BN nanotubes. Europhys Lett 76:664–669CrossRef
64.
go back to reference Cho YJ, Kim CH, Kim HS, Park J, Choi HC, Shin HJ, Gao G, Kang HS (2009) Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation. Chem Mater 21:136–143CrossRef Cho YJ, Kim CH, Kim HS, Park J, Choi HC, Shin HJ, Gao G, Kang HS (2009) Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation. Chem Mater 21:136–143CrossRef
65.
go back to reference Liu YJ, Gao B, Xu D, Wang H, Zhao J (2014) Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: electronic, magnetic properties, and reactivity. Phys Lett A 378:2989–2994CrossRef Liu YJ, Gao B, Xu D, Wang H, Zhao J (2014) Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: electronic, magnetic properties, and reactivity. Phys Lett A 378:2989–2994CrossRef
66.
go back to reference Ju SP, Wang YC, Lien TW (2011) Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study. Nanoscale Res Lett 6:160CrossRef Ju SP, Wang YC, Lien TW (2011) Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study. Nanoscale Res Lett 6:160CrossRef
67.
go back to reference Guerini S, Kar T, Piquini P (2004) Theoretical study of Si impurities in BN nanotubes. Eur Phys J B 38:515CrossRef Guerini S, Kar T, Piquini P (2004) Theoretical study of Si impurities in BN nanotubes. Eur Phys J B 38:515CrossRef
68.
go back to reference Tang CC, Bando Y, Ding XX, Qi SR, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550–14551CrossRef Tang CC, Bando Y, Ding XX, Qi SR, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550–14551CrossRef
69.
go back to reference Gao G, Seok Kang H (2008) First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput 4:1690–1697CrossRef Gao G, Seok Kang H (2008) First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput 4:1690–1697CrossRef
Metadata
Title
Exploring electronic properties and NO gas sensitivity of Si-doped SW-BNNTs under axial tensile strain
Authors
Hossein Roohi
Layla Maleki
Maryam Erfani Moradzadeh
Publication date
09-05-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1146-y

Other articles of this Issue 16/2017

Journal of Materials Science 16/2017 Go to the issue

Premium Partners