Skip to main content
Top
Published in: Neural Computing and Applications 2/2019

19-06-2017 | Original Article

Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network

Authors: Yasmina Kellouche, Bakhta Boukhatem, Mohamed Ghrici, Arezki Tagnit-Hamou

Published in: Neural Computing and Applications | Special Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Concrete carbonation is one of the main causes of corrosion of the reinforcement and consequently causing damage to the reinforced concrete structures. The progress of the carbonation front depends on many factors including mixture proportions and exposure conditions. Several carbonation prediction models including mathematical and analytical predictions are available. Most of these models, however, are based on simple regression equations and cannot predict or accurately reflect the various factors involved in concrete carbonation. The current published results in this issue are in conflict. In view of this, our research aims to apply an artificial neural network (ANN) approach for predicting the carbonation of fly-ash concrete taking into account the most influential parameters, including mixture proportions and exposure conditions. Six parameters were considered as inputs to the ANN model, covering, binder and fly-ash content, water-to-binder ratio, CO2 concentration, relative humidity, and time of exposure; one output is carbonation depth. The ANN model was prepared, trained, and tested with 300 datasets from experiments as well as past research. The performance of training, validation, and test sets shows a high correlation between the experimental and the ANN predicted values of the carbonation depth. In addition, the proposed prediction model was in good agreement with the experimental data in comparison with other model. This study concludes that the use of this model for numerical investigations on the parameters affecting the carbonation depth in fly-ash concrete is successful and provides scientific guidance for durability design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18:478–485CrossRef Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18:478–485CrossRef
2.
go back to reference Williams PJ, Biernacki JJ, Walker LR, Meyer HM, Rawn CJ, Bai J (2002) Microanalysis of alkali-activated fly ash CH pastes. Cem Concr Res 32(6):963–972CrossRef Williams PJ, Biernacki JJ, Walker LR, Meyer HM, Rawn CJ, Bai J (2002) Microanalysis of alkali-activated fly ash CH pastes. Cem Concr Res 32(6):963–972CrossRef
3.
go back to reference Liu J, Tang K, Qiu Q, Pan D, Lei Z, Xing F (2014) Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. Materials 7(9):6646–6659CrossRef Liu J, Tang K, Qiu Q, Pan D, Lei Z, Xing F (2014) Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. Materials 7(9):6646–6659CrossRef
4.
go back to reference Naik TR, Singh SS, Hossain MM (1994) Permeability of concrete containing large amounts of fly ash. Cem Concr Res 24(5):913–922CrossRef Naik TR, Singh SS, Hossain MM (1994) Permeability of concrete containing large amounts of fly ash. Cem Concr Res 24(5):913–922CrossRef
5.
go back to reference McCarthy M, Dhir R (2005) Development of high volume fly ash cements for use in concrete construction. Fuel 84(11):1423–1432CrossRef McCarthy M, Dhir R (2005) Development of high volume fly ash cements for use in concrete construction. Fuel 84(11):1423–1432CrossRef
6.
go back to reference Ho DWS, Lewis RK (1987) Carbonation of concrete and its prediction. Cem Concr Res 17(3):489–504CrossRef Ho DWS, Lewis RK (1987) Carbonation of concrete and its prediction. Cem Concr Res 17(3):489–504CrossRef
7.
go back to reference Sulapha P, Wong SF, Wee TH, Swaddiwudhipong S (2003) Carbonation of concrete containing mineral admixtures. J Mater Civ Eng 15(2):134–143CrossRef Sulapha P, Wong SF, Wee TH, Swaddiwudhipong S (2003) Carbonation of concrete containing mineral admixtures. J Mater Civ Eng 15(2):134–143CrossRef
8.
go back to reference Sisomphon K, Franke L (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem Concr Res 37(12):1647–1653CrossRef Sisomphon K, Franke L (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem Concr Res 37(12):1647–1653CrossRef
9.
go back to reference Lammertijn S, De Belie N (2008) Porosity gas permeability, carbonation and their interaction in high-volume fly ash concrete. Mag Concr Res 60(7):535–545CrossRef Lammertijn S, De Belie N (2008) Porosity gas permeability, carbonation and their interaction in high-volume fly ash concrete. Mag Concr Res 60(7):535–545CrossRef
10.
go back to reference Bouzoubaa N, Bilodeau A, Foo S (2010) Carbonation of fly ash concrete: laboratory and field data. Can J Civ Eng 37(12):1535–1549CrossRef Bouzoubaa N, Bilodeau A, Foo S (2010) Carbonation of fly ash concrete: laboratory and field data. Can J Civ Eng 37(12):1535–1549CrossRef
11.
go back to reference Khunthongkeaw J, Tangtermsirikula S, Leelawat T (2006) A study on carbonation depth prediction for fly ash concrete. Constr Build Mater 20(9):744–753CrossRef Khunthongkeaw J, Tangtermsirikula S, Leelawat T (2006) A study on carbonation depth prediction for fly ash concrete. Constr Build Mater 20(9):744–753CrossRef
12.
go back to reference Papadakis VG (2000) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res 30(2):291–299CrossRef Papadakis VG (2000) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res 30(2):291–299CrossRef
13.
go back to reference Atis CD (2003) Accelerated carbonation and testing of concrete made with fly ash. Constr Build Mater 17(3):147–152CrossRef Atis CD (2003) Accelerated carbonation and testing of concrete made with fly ash. Constr Build Mater 17(3):147–152CrossRef
14.
go back to reference Khunthongkeaw J, Tangtermsirikul S (2005) Model for simulating carbonation of fly ash concrete. J Mater Civ Eng 17(12):570–578CrossRef Khunthongkeaw J, Tangtermsirikul S (2005) Model for simulating carbonation of fly ash concrete. J Mater Civ Eng 17(12):570–578CrossRef
15.
go back to reference Kobayashi K, Uno Y (1990) Mechanism of carbonation of concrete. JSCE 1(1):139–151 Kobayashi K, Uno Y (1990) Mechanism of carbonation of concrete. JSCE 1(1):139–151
16.
go back to reference Izumi I, Kita D, Maeda H (1986) Carbonation. Kibodang Publication, Japan, pp 35–88 Izumi I, Kita D, Maeda H (1986) Carbonation. Kibodang Publication, Japan, pp 35–88
17.
go back to reference Papadakis VG (1999) Effect of fly ash on Portland cement systems Part I. Low-calcium fly ash. Cem Concr Res 29(11):1727–1736CrossRef Papadakis VG (1999) Effect of fly ash on Portland cement systems Part I. Low-calcium fly ash. Cem Concr Res 29(11):1727–1736CrossRef
18.
go back to reference Jiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high volume concrete. Cem Concr Res 30(5):699–702CrossRef Jiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high volume concrete. Cem Concr Res 30(5):699–702CrossRef
19.
go back to reference Wang JZ, Ni HG, He JY (1999) The application of automatic acquisition of knowledge to mix design of concrete. Cem Concr Res 29(12):1875–1880CrossRef Wang JZ, Ni HG, He JY (1999) The application of automatic acquisition of knowledge to mix design of concrete. Cem Concr Res 29(12):1875–1880CrossRef
20.
go back to reference Boukhatem B, Ghrici M, Kenai S, Tagnit-Hamou A (2011) Prediction of the efficiency of GGBFS in concrete using artificial neural networks. ACI Mater J 108(1):55–63 Boukhatem B, Ghrici M, Kenai S, Tagnit-Hamou A (2011) Prediction of the efficiency of GGBFS in concrete using artificial neural networks. ACI Mater J 108(1):55–63
21.
go back to reference Boukhatem B, GhriciM Kenai S, Tagnit-HamouA Ziou D (2012) A system for predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique. Comput Concr 10(6):557–574CrossRef Boukhatem B, GhriciM Kenai S, Tagnit-HamouA Ziou D (2012) A system for predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique. Comput Concr 10(6):557–574CrossRef
22.
go back to reference Bellalia-Douma O, Boukhatem B, Ghrici M, Tagnit-Hamou A, Ziou D (2016) Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput Appl. doi:10.1007/s00521-016-2368-7 Bellalia-Douma O, Boukhatem B, Ghrici M, Tagnit-Hamou A, Ziou D (2016) Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput Appl. doi:10.​1007/​s00521-016-2368-7
23.
go back to reference Stegemann JA, Buenfeld NR (2002) Prediction of unconfined compressive strength of cement paste with pure metal compound additions. Cem Concr Res 32(6):903–913CrossRef Stegemann JA, Buenfeld NR (2002) Prediction of unconfined compressive strength of cement paste with pure metal compound additions. Cem Concr Res 32(6):903–913CrossRef
24.
go back to reference Sarıdemir M, Billir T (2016) Modeling of elastic modulus of concrete containing fly ash by gene expression programming. In: Fourth international conference on sustainable construction materials and technologies. Las Vegas Sarıdemir M, Billir T (2016) Modeling of elastic modulus of concrete containing fly ash by gene expression programming. In: Fourth international conference on sustainable construction materials and technologies. Las Vegas
25.
go back to reference Billir T, Gencel O, Topçu IB (2016) Prediction of restrained shrinkage crack widths of slag mortar composites by Taakagi and Sugeno ANFIS models. Neural Comput Appl 27:2523–2536CrossRef Billir T, Gencel O, Topçu IB (2016) Prediction of restrained shrinkage crack widths of slag mortar composites by Taakagi and Sugeno ANFIS models. Neural Comput Appl 27:2523–2536CrossRef
26.
go back to reference Yan L, Shengli Z, Cheng Y (2008) The forecast of carbonation depth of concrete based on RBF neural network. In: Second international symposium on intelligent information technology application, Shanghai, pp 544–548 Yan L, Shengli Z, Cheng Y (2008) The forecast of carbonation depth of concrete based on RBF neural network. In: Second international symposium on intelligent information technology application, Shanghai, pp 544–548
27.
go back to reference Lu C, Liu R (2009) Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Adv Artif Neural Syst 2009:193139-1–193139-8. doi:10.1155/2009/193139 Lu C, Liu R (2009) Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Adv Artif Neural Syst 2009:193139-1–193139-8. doi:10.​1155/​2009/​193139
28.
go back to reference Narui B, Guoli Y, Hui Z (2009) Prediction of concrete carbonization depth based on DE-BP neural network. In: Third international symposium on intelligent information technology application. Nanchang, China, pp 240–243 Narui B, Guoli Y, Hui Z (2009) Prediction of concrete carbonization depth based on DE-BP neural network. In: Third international symposium on intelligent information technology application. Nanchang, China, pp 240–243
29.
go back to reference Kwon SJ, Song HW (2010) Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem Concr Res 40(1):119–127CrossRef Kwon SJ, Song HW (2010) Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem Concr Res 40(1):119–127CrossRef
30.
go back to reference Daming L, Ditao N, Zhenping D (2014) Application of neural network for concrete carbonation depth prediction. In: 4th International conference on the durability of concrete structures. Purdue University, West Lafayette, pp 66–71 Daming L, Ditao N, Zhenping D (2014) Application of neural network for concrete carbonation depth prediction. In: 4th International conference on the durability of concrete structures. Purdue University, West Lafayette, pp 66–71
31.
go back to reference Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Education Inc, Upper Saddle River Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Education Inc, Upper Saddle River
32.
go back to reference Jain A, Mao J, Mohiuddin K (1996) Artificial neural networks: a tutorial. IEEE Comput 29(3):31–44CrossRef Jain A, Mao J, Mohiuddin K (1996) Artificial neural networks: a tutorial. IEEE Comput 29(3):31–44CrossRef
33.
go back to reference Jiang L, Liu Z, Ye Y (2004) Durability of concrete incorporating large volumes of low-quality fly ash. Cem Concr Res 34(8):1467–1469CrossRef Jiang L, Liu Z, Ye Y (2004) Durability of concrete incorporating large volumes of low-quality fly ash. Cem Concr Res 34(8):1467–1469CrossRef
34.
go back to reference Burden D (2006) The durability of concrete containing high levels of fly ash. Ph.D. thesis, University of New Brunswick Burden D (2006) The durability of concrete containing high levels of fly ash. Ph.D. thesis, University of New Brunswick
35.
go back to reference Rozière E, Loukili A, Cussigh F (2009) A performance based approach for durability of concrete exposed to carbonation. Constr Build Mater 23(1):190–199CrossRef Rozière E, Loukili A, Cussigh F (2009) A performance based approach for durability of concrete exposed to carbonation. Constr Build Mater 23(1):190–199CrossRef
36.
go back to reference Xu H, Zhanqing C, Subei L, Wei H, Dan M (2010) Carbonation test study on low calcium fly ash concrete. Appl Mech Mater 34–35:327–331CrossRef Xu H, Zhanqing C, Subei L, Wei H, Dan M (2010) Carbonation test study on low calcium fly ash concrete. Appl Mech Mater 34–35:327–331CrossRef
37.
go back to reference Younsi A, Turcry P, Roziere E, Aït-Mokhtar A, Loukili A (2011) Performance-based design and carbonation of concrete with high fly ash content. Cem Concr Compos 33(10):993–1000CrossRef Younsi A, Turcry P, Roziere E, Aït-Mokhtar A, Loukili A (2011) Performance-based design and carbonation of concrete with high fly ash content. Cem Concr Compos 33(10):993–1000CrossRef
38.
go back to reference Das BB, Pandey SP (2011) Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete. J Mater Civ Eng 23(9):1365–1368CrossRef Das BB, Pandey SP (2011) Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete. J Mater Civ Eng 23(9):1365–1368CrossRef
39.
go back to reference Zhang P, Li Q (2013) Effect of fly ash on durability of high performance concrete composites. Res J Appl Sci Eng Technol 6(1):7–12CrossRef Zhang P, Li Q (2013) Effect of fly ash on durability of high performance concrete composites. Res J Appl Sci Eng Technol 6(1):7–12CrossRef
40.
go back to reference Van P, De Belie N (2014) Service life based global warming potential for high-volume fly ash concrete exposed to carbonation. Constr Build Mater 55:183–193CrossRef Van P, De Belie N (2014) Service life based global warming potential for high-volume fly ash concrete exposed to carbonation. Constr Build Mater 55:183–193CrossRef
41.
go back to reference Huiang C, Geng G, Lu Y, Bao G, Lin Z (2012) Carbonation depth research of concrete with low-volume fly ash. Appl Mech Mater 155–156:984–988CrossRef Huiang C, Geng G, Lu Y, Bao G, Lin Z (2012) Carbonation depth research of concrete with low-volume fly ash. Appl Mech Mater 155–156:984–988CrossRef
42.
go back to reference Gao Y, Cheng L, Gao Z, Guo S (2013) Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Constr Build Mater 43:506–510CrossRef Gao Y, Cheng L, Gao Z, Guo S (2013) Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Constr Build Mater 43:506–510CrossRef
43.
go back to reference Venuat M, Alexandre J (1968) De la carbonatation du béton. Publication du CERILH, No. 638, pp 421–427 Venuat M, Alexandre J (1968) De la carbonatation du béton. Publication du CERILH, No. 638, pp 421–427
44.
go back to reference Parrott LJ (1987) A review of carbonation in reinforced concrete. Cement and Concrete Association Parrott LJ (1987) A review of carbonation in reinforced concrete. Cement and Concrete Association
45.
go back to reference Duval R (1992) La durabilité des armatures et du béton d’enrobage, dans «La durabilité des bétons». Collection de l’ATHIL. Presse de l’École Nationale des Ponts et Chaussées, Paris, pp 173–224. ISBN 2-85978-184-6 Duval R (1992) La durabilité des armatures et du béton d’enrobage, dans «La durabilité des bétons». Collection de l’ATHIL. Presse de l’École Nationale des Ponts et Chaussées, Paris, pp 173–224. ISBN 2-85978-184-6
46.
go back to reference Houst YF (1992) Diffusion de gaz, carbonatation et retrait de la pate de ciment durcie. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne Houst YF (1992) Diffusion de gaz, carbonatation et retrait de la pate de ciment durcie. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne
47.
go back to reference Shi HS, Xu BW, Zhou XC (2009) Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater 23(5):1980–1985CrossRef Shi HS, Xu BW, Zhou XC (2009) Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater 23(5):1980–1985CrossRef
48.
go back to reference Wolf J, Dal Molin DCC (1989) Carbonation of mortars and concrete. Intervening factors. In: Symposium on pathology of buildings: prevention and recovery. Federal University of Rio Grande do Sul, Porto Alegre, pp 118–33 Wolf J, Dal Molin DCC (1989) Carbonation of mortars and concrete. Intervening factors. In: Symposium on pathology of buildings: prevention and recovery. Federal University of Rio Grande do Sul, Porto Alegre, pp 118–33
49.
go back to reference Roy SK, Poh KB, Northwood DO (1999) Durability of concrete–accelerated carbonation and weathering studies. Build Environ 34(5):597–606CrossRef Roy SK, Poh KB, Northwood DO (1999) Durability of concrete–accelerated carbonation and weathering studies. Build Environ 34(5):597–606CrossRef
50.
go back to reference Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aid Civ Infrastruct Eng 32(5):361–378CrossRef Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aid Civ Infrastruct Eng 32(5):361–378CrossRef
51.
go back to reference Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci 275:1–12CrossRef Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci 275:1–12CrossRef
52.
go back to reference Peng Y, Kou G, Shi Y, Chen Z (2008) Descriptive framework for the field of data mining and knowledge discovery. Int J Inf Technol Decis Mak 7(4):639–682CrossRef Peng Y, Kou G, Shi Y, Chen Z (2008) Descriptive framework for the field of data mining and knowledge discovery. Int J Inf Technol Decis Mak 7(4):639–682CrossRef
Metadata
Title
Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network
Authors
Yasmina Kellouche
Bakhta Boukhatem
Mohamed Ghrici
Arezki Tagnit-Hamou
Publication date
19-06-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue Special Issue 2/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3052-2

Other articles of this Special Issue 2/2019

Neural Computing and Applications 2/2019 Go to the issue

Premium Partner