Skip to main content
Top
Published in: Journal of Electronic Materials 2/2024

07-12-2023 | Original Research Article

Exploring the Potential of Dielectric Modulated SOI Junctionless FinFETs for Label-Free Biosensing

Authors: Abhishek Raj, Shashi Kant Sharma

Published in: Journal of Electronic Materials | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research presents a biosensor based on a dielectrically modulated (DM) silicon on insulator (SOI) junctionless fin-shaped field-effect transistor (FinFET) (DM-SOI-JL-FinFET) for the detection of biomolecules. This biosensor is integrated with a label free detection of neutral biomolecules such as biotin (k = 2.53), APTES (k = 3.57), ferro-cyt C (k = 4.7), bacteriophages (k = 6.3), and keratin (k = 8). By etching the gate oxide, a nanocavity with a thickness of 5 nm and a height of 35 nm is created for immobilized biomolecules. The presence of biomolecules is determined by observing variations in the dielectric constant. Various important parameters including threshold voltage, the ratio of on-state and off-state current (ION/IOFF) sensitivity, drain current, transconductance, and surface potential are thoroughly investigated for different biomolecules with a function of dielectric constant, fin height, and fin width. The study demonstrates a threshold voltage sensitivity (Sv) of 0.1552 (biotin, k = 2.53) and 0.5628 (keratin, k = 8), as well as an ION/IOFF current sensitivity (SI) of 1.1609 (biotin, k = 2.53) and 3.9774 (keratin, k = 8) for the simulated structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Buvaneswari and N.B. Balamurugan, 2D analytical modeling and simulation of dual material DG MOSFET for biosensing application. AEU Int. J. Electron. Commun. 99, 193 (2019).CrossRef B. Buvaneswari and N.B. Balamurugan, 2D analytical modeling and simulation of dual material DG MOSFET for biosensing application. AEU Int. J. Electron. Commun. 99, 193 (2019).CrossRef
2.
go back to reference J.H. Ahn, S.J. Choi, J.W. Han, T.J. Park, S.Y. Lee, and Y.K. Choi, Investigation of size dependence on sensitivity for nanowire FET biosensors. IEEE Trans. Nanotechnol. 10, 1405 (2011).CrossRef J.H. Ahn, S.J. Choi, J.W. Han, T.J. Park, S.Y. Lee, and Y.K. Choi, Investigation of size dependence on sensitivity for nanowire FET biosensors. IEEE Trans. Nanotechnol. 10, 1405 (2011).CrossRef
3.
go back to reference S.S. Mohanty, S. Mishra, M. Mohapatra, and G. Prasad, Dielectrically modulated hetero channel double gate MOSFET as a label free biosensor. Trans. Electr. Electron. Mater. 23, 156 (2021).CrossRef S.S. Mohanty, S. Mishra, M. Mohapatra, and G. Prasad, Dielectrically modulated hetero channel double gate MOSFET as a label free biosensor. Trans. Electr. Electron. Mater. 23, 156 (2021).CrossRef
4.
go back to reference D. Singh and G.C. Patil, Dielectric-modulated Bulk-Planar junctionless field-effect transistor for biosensing applications. IEEE Trans. Electron Devices 68, 3545 (2021).CrossRef D. Singh and G.C. Patil, Dielectric-modulated Bulk-Planar junctionless field-effect transistor for biosensing applications. IEEE Trans. Electron Devices 68, 3545 (2021).CrossRef
5.
go back to reference P. Bergveld, Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19, 342 (1972).CrossRef P. Bergveld, Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19, 342 (1972).CrossRef
6.
go back to reference S.A. Hafiz, M. Ehteshamuddin, and S.A. Loan, Dielectrically modulated source-engineered charge-plasma-based Schottky-FET as a label-free biosensor. IEEE Trans. Electron Devices 66, 1905 (2019).CrossRef S.A. Hafiz, M. Ehteshamuddin, and S.A. Loan, Dielectrically modulated source-engineered charge-plasma-based Schottky-FET as a label-free biosensor. IEEE Trans. Electron Devices 66, 1905 (2019).CrossRef
7.
go back to reference C.A. Vu and W.Y. Chen, Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors. 19, 4214 (2019).CrossRef C.A. Vu and W.Y. Chen, Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors. 19, 4214 (2019).CrossRef
8.
go back to reference S. Kim, D. Baek, J.Y. Kim, S.J. Choi, M.L. Seol, and Y.K. Choi, A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101, 073703 (2012).CrossRef S. Kim, D. Baek, J.Y. Kim, S.J. Choi, M.L. Seol, and Y.K. Choi, A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101, 073703 (2012).CrossRef
9.
go back to reference H. Im, X.J. Huang, B. Gu, and Y.K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430 (2007).CrossRef H. Im, X.J. Huang, B. Gu, and Y.K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430 (2007).CrossRef
10.
go back to reference X. Chen, Z. Guo, G.M. Yang, J. Li, M.Q. Li, J.H. Liu, and X.J. Huang, Electrical nanogap devices for biosensing. Mater. Today 13, 28 (2010).CrossRef X. Chen, Z. Guo, G.M. Yang, J. Li, M.Q. Li, J.H. Liu, and X.J. Huang, Electrical nanogap devices for biosensing. Mater. Today 13, 28 (2010).CrossRef
11.
go back to reference J.M. Choi, J.W. Han, S.J. Choi, and Y.K. Choi, Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57, 3477 (2010).CrossRef J.M. Choi, J.W. Han, S.J. Choi, and Y.K. Choi, Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57, 3477 (2010).CrossRef
12.
go back to reference O. E. Oyedeji and V. M. Srivastava, Cylindrical surrounding double-gate MOSFET based amplifier: a circuit perspective. International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). pp. 152-155. (2017) O. E. Oyedeji and V. M. Srivastava, Cylindrical surrounding double-gate MOSFET based amplifier: a circuit perspective. International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). pp. 152-155. (2017)
13.
go back to reference C. Diaz Llorente, J.P. Colinge, S. Martinie, S. Cristoloveanu, J. Wan, C. Le Royer, G. Ghibaudo, and M. Vinet, New prospects on high on-current and steep subthreshold slope for innovative Tunnel FET architectures. Solid-State Electr. 159, 26 (2019).CrossRef C. Diaz Llorente, J.P. Colinge, S. Martinie, S. Cristoloveanu, J. Wan, C. Le Royer, G. Ghibaudo, and M. Vinet, New prospects on high on-current and steep subthreshold slope for innovative Tunnel FET architectures. Solid-State Electr. 159, 26 (2019).CrossRef
14.
go back to reference U.F. Ahmed, and M.M. Ahmed, A 3-D potential model to assess DC characteristics of Si FinFETs. J. Comput. Electron. 18, 893 (2019).CrossRef U.F. Ahmed, and M.M. Ahmed, A 3-D potential model to assess DC characteristics of Si FinFETs. J. Comput. Electron. 18, 893 (2019).CrossRef
15.
go back to reference J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225 (2010).CrossRef J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225 (2010).CrossRef
16.
go back to reference M. Mounir Mahmoud, and N. Soin, A comparative study of lifetime reliability of planar MOSFET and FinFET due to BTI for the 16 nm CMOS technology node based on reaction-diffusion model. Microelectr. Reliab. 97, 53 (2019).CrossRef M. Mounir Mahmoud, and N. Soin, A comparative study of lifetime reliability of planar MOSFET and FinFET due to BTI for the 16 nm CMOS technology node based on reaction-diffusion model. Microelectr. Reliab. 97, 53 (2019).CrossRef
17.
go back to reference H. D. Sehgal, Y. Pratap, M. Gupta, and S. Kabra, Comparative analysis of dielectric modulated junctionless FinFET biosensor and junctionless DG MOSFET Biosensor for Medical Instrumentation. International Conference on Power Electronics, Control and Automation (ICPECA). pp. 1-6 (2019) H. D. Sehgal, Y. Pratap, M. Gupta, and S. Kabra, Comparative analysis of dielectric modulated junctionless FinFET biosensor and junctionless DG MOSFET Biosensor for Medical Instrumentation. International Conference on Power Electronics, Control and Automation (ICPECA). pp. 1-6 (2019)
18.
go back to reference G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E.C.C. Kan, FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron Devices 49, 1411 (2002).CrossRef G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E.C.C. Kan, FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron Devices 49, 1411 (2002).CrossRef
19.
go back to reference H. D. Sehgal, Y. Pratap, M. Gupta, S. Kabra, and P. Pal, Comparative analysis of junctionless FinFET and inverted mode FinFET as phosphine (PH3) gas sensor. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). pp. 193-197 (2020) H. D. Sehgal, Y. Pratap, M. Gupta, S. Kabra, and P. Pal, Comparative analysis of junctionless FinFET and inverted mode FinFET as phosphine (PH3) gas sensor. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). pp. 193-197 (2020)
20.
go back to reference C.P. Wang Y.C. Shen, P.C. Liou, Y.L. Chueh, Y.D. Chih, J. Chang, C.J. Lin, and Y.C. King, Dynamic pH sensor with embedded calibration scheme by advanced CMOS FinFET technology. Sensors. 19, 1585 (2019).CrossRef C.P. Wang Y.C. Shen, P.C. Liou, Y.L. Chueh, Y.D. Chih, J. Chang, C.J. Lin, and Y.C. King, Dynamic pH sensor with embedded calibration scheme by advanced CMOS FinFET technology. Sensors. 19, 1585 (2019).CrossRef
21.
go back to reference M. Eberlein and H. Pretl, A no-trim, scaling-friendly thermal sensor in 16nm finfet using bulk diodes as sensing elements. IEEE Solid-State Circuits Lett. 2, 63 (2019).CrossRef M. Eberlein and H. Pretl, A no-trim, scaling-friendly thermal sensor in 16nm finfet using bulk diodes as sensing elements. IEEE Solid-State Circuits Lett. 2, 63 (2019).CrossRef
22.
go back to reference D. Pfaff, R. Abbott, X.J. Wang, S. Moazzeni, R. Mason, and R.R. Smith, A 14-GHz Bang-Bang Digital PLL with Sub-150-fs integrated jitter for wireline applications in 7-nm FinFET CMOS. IEEE J. Solid-State Circuits 55, 580 (2020).CrossRef D. Pfaff, R. Abbott, X.J. Wang, S. Moazzeni, R. Mason, and R.R. Smith, A 14-GHz Bang-Bang Digital PLL with Sub-150-fs integrated jitter for wireline applications in 7-nm FinFET CMOS. IEEE J. Solid-State Circuits 55, 580 (2020).CrossRef
23.
go back to reference A. Chhabra, A. Kumar, and R. Chaujar, Sub-20 nm GaAs junctionless FinFET for biosensing application. Vacuum 160, 467 (2019).CrossRef A. Chhabra, A. Kumar, and R. Chaujar, Sub-20 nm GaAs junctionless FinFET for biosensing application. Vacuum 160, 467 (2019).CrossRef
24.
go back to reference M. Sypabekova, A. Hagemann, D. Rho, and S. Kim, Review: 3-aminopropyltriethoxysilane (APTES) deposition methods on oxide surfaces in solution and vapor phases for biosensing applications. Biosensors 13, 36 (2022).CrossRef M. Sypabekova, A. Hagemann, D. Rho, and S. Kim, Review: 3-aminopropyltriethoxysilane (APTES) deposition methods on oxide surfaces in solution and vapor phases for biosensing applications. Biosensors 13, 36 (2022).CrossRef
25.
go back to reference T.J. Beveridge and L.L. Graham, Surface layers of bacteria. Microbiol. Rev. 55, 684 (1991).CrossRef T.J. Beveridge and L.L. Graham, Surface layers of bacteria. Microbiol. Rev. 55, 684 (1991).CrossRef
26.
go back to reference O. Morag, N.G. Sgourakis, D. Baker, and A. Goldbourt, The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc. Nat. Acad. Sci. 112, 971 (2015).CrossRef O. Morag, N.G. Sgourakis, D. Baker, and A. Goldbourt, The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc. Nat. Acad. Sci. 112, 971 (2015).CrossRef
27.
go back to reference J. Paczesny and K. Bielec, Application of bacteriophages in nanotechnology. Nanomaterials 10, 1944 (2020).CrossRef J. Paczesny and K. Bielec, Application of bacteriophages in nanotechnology. Nanomaterials 10, 1944 (2020).CrossRef
28.
go back to reference B. Wang, W. Yang, J. McKittrick, and M.A. Meyers, Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76, 229 (2016).CrossRef B. Wang, W. Yang, J. McKittrick, and M.A. Meyers, Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76, 229 (2016).CrossRef
29.
go back to reference M. Sanz-Gaitero, M. Seoane-Blanco, and M.J. van Raaij, Structure and function of bacteriophages. Bacteriophages. 1, 73 (2019). M. Sanz-Gaitero, M. Seoane-Blanco, and M.J. van Raaij, Structure and function of bacteriophages. Bacteriophages. 1, 73 (2019).
30.
go back to reference A. Lošdorfer Božič, A. Šiber, and R. Podgornik, Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. J. Biol. Phys. 39, 215 (2013).CrossRef A. Lošdorfer Božič, A. Šiber, and R. Podgornik, Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. J. Biol. Phys. 39, 215 (2013).CrossRef
31.
go back to reference S. Clara, Silvaco user’s manual device simulation software, (Silvaco, Inc. 2018) S. Clara, Silvaco user’s manual device simulation software, (Silvaco, Inc. 2018)
32.
go back to reference A. Chakraborty and A. Sarkar, Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 16, 556 (2017).CrossRef A. Chakraborty and A. Sarkar, Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 16, 556 (2017).CrossRef
33.
go back to reference R. Narang, M. Gupta, M. Saxena, Investigation of dielectric-modulated double-gate junctionless MOSFET for detection of biomolecules. 2013 Annual IEEE India Conference (INDICON). pp. 1-6 (2013) R. Narang, M. Gupta, M. Saxena, Investigation of dielectric-modulated double-gate junctionless MOSFET for detection of biomolecules. 2013 Annual IEEE India Conference (INDICON). pp. 1-6 (2013)
34.
go back to reference R. Narang, M. Saxena, and M. Gupta, Modeling and simulation investigation of sensitivity of symmetric split gate junctionless FET for biosensing application. IEEE Sens. J. 17, 4853 (2017).CrossRef R. Narang, M. Saxena, and M. Gupta, Modeling and simulation investigation of sensitivity of symmetric split gate junctionless FET for biosensing application. IEEE Sens. J. 17, 4853 (2017).CrossRef
Metadata
Title
Exploring the Potential of Dielectric Modulated SOI Junctionless FinFETs for Label-Free Biosensing
Authors
Abhishek Raj
Shashi Kant Sharma
Publication date
07-12-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 2/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10844-6

Other articles of this Issue 2/2024

Journal of Electronic Materials 2/2024 Go to the issue