Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1/2020

21-11-2019

Exposed crystal facets of WO3 nanosheets by phase control on NO2-sensing performance

Authors: Wanqing Song, Rui Zhang, Xue Bai, Qianqian Jia, Huiming Ji

Published in: Journal of Materials Science: Materials in Electronics | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

WO3 is a traditional type of NO2-sensing material. There are still some problems in relevant studies, such as high detection limit, high working temperature, and complex process. In this paper, simple hydrothermal method was used to prepare monoclinic WO3 (M-WO3), triclinic WO3 (T-WO3), and hexagonal WO3 (H-WO3) nanosheets. The NO2-sensing performance of T-WO3 sensors is the best among these three phases. The response of T-WO3 toward 300 ppb NO2 at its optimum working temperature (100 °C) is 18.8. The selectivity and stability toward NO2 are also great. The differences of NO2-sensing performances existed between different phases of WO3, owing to different exposed crystal facets. The T-WO3 sensors have excellent ppb-level NO2-sensing performance at low working temperature, owing to more O1c active sites on the main exposed crystal (200) facet, and NO2 molecules are easily adsorbed at O1c active sites, which is the root cause of the better sensing performance of T-WO3 toward NO2. These results show that T-WO3 nanosheets sensor can be seen as a competitive candidate for low concentration NO2 detection, and this study can be regarded as a basic research on improving gas-sensing performance of sensitive materials by controlling the exposed crystal facets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens. Actuator B 171, 25–42 (2012)CrossRef A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens. Actuator B 171, 25–42 (2012)CrossRef
2.
go back to reference Y.X. Liu, J. Parisi, X.C. Sun, Y. Lei, Solid-state gas sensors for high temperature applications: a review. J. Mater. Chem. A 2, 9919–9943 (2014)CrossRef Y.X. Liu, J. Parisi, X.C. Sun, Y. Lei, Solid-state gas sensors for high temperature applications: a review. J. Mater. Chem. A 2, 9919–9943 (2014)CrossRef
3.
go back to reference L.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 1, 9099–9106 (2013)CrossRef L.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 1, 9099–9106 (2013)CrossRef
4.
go back to reference K.M.E. Stewart, A. Penlidis, Novel test system for gas sensing materials and sensors. Macromol. Symp. 324, 11–18 (2013)CrossRef K.M.E. Stewart, A. Penlidis, Novel test system for gas sensing materials and sensors. Macromol. Symp. 324, 11–18 (2013)CrossRef
5.
go back to reference N.A. Marley, J.S. Gaffney, R.V. White, L. Rodriguez-Cuadra, S.E. Herndon, E. Dunlea, R.M. Volkamer, L.T. Molina, M.J. Molina, Fast gas chromatography with luminol chemiluminescence detection for the simultaneous determination of nitrogen dioxide and peroxyacetyl nitrate in the atmosphere. Rev. Sci. Instrum. 75, 4595–4605 (2004)CrossRef N.A. Marley, J.S. Gaffney, R.V. White, L. Rodriguez-Cuadra, S.E. Herndon, E. Dunlea, R.M. Volkamer, L.T. Molina, M.J. Molina, Fast gas chromatography with luminol chemiluminescence detection for the simultaneous determination of nitrogen dioxide and peroxyacetyl nitrate in the atmosphere. Rev. Sci. Instrum. 75, 4595–4605 (2004)CrossRef
6.
go back to reference J.W. Yoon, M.L. Grilli, E. Di Bartolomeo, R. Polini, E. Traversa, The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. Sens. Actuator B 76, 483–488 (2001)CrossRef J.W. Yoon, M.L. Grilli, E. Di Bartolomeo, R. Polini, E. Traversa, The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. Sens. Actuator B 76, 483–488 (2001)CrossRef
7.
go back to reference P. Elumalai, N. Miura, Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature. Solid State Ion. 176, 2517–2522 (2005)CrossRef P. Elumalai, N. Miura, Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature. Solid State Ion. 176, 2517–2522 (2005)CrossRef
8.
go back to reference S.H. Wei, M.H. Zhou, W.P. Du, Improved acetone sensing properties of ZnO hollow nanofibers by s ingle capillary electro spinning. Sens. Actuator B 160, 753–759 (2011)CrossRef S.H. Wei, M.H. Zhou, W.P. Du, Improved acetone sensing properties of ZnO hollow nanofibers by s ingle capillary electro spinning. Sens. Actuator B 160, 753–759 (2011)CrossRef
9.
go back to reference B.G. Kim, D.G. Lim, J.H. Park, Y.J. Choi, J.G. Park, In-situ bridging of SnO2 nanowires between the electrodes and their NO2 gas sensing characteristics. Appl. Surf. Sci. 257, 4715–4718 (2011)CrossRef B.G. Kim, D.G. Lim, J.H. Park, Y.J. Choi, J.G. Park, In-situ bridging of SnO2 nanowires between the electrodes and their NO2 gas sensing characteristics. Appl. Surf. Sci. 257, 4715–4718 (2011)CrossRef
10.
go back to reference J.W. Yoon, J.K. Choi, J.H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens. Actuator B 161, 570–577 (2012)CrossRef J.W. Yoon, J.K. Choi, J.H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens. Actuator B 161, 570–577 (2012)CrossRef
11.
go back to reference T. Hyodo, H. Inoue, H. Motomura, K. Matsuo, T. Hashishin, J. Tamaki, Y. Shimizu, M. Egashira, NO2 sensing properties of macroporous In2O3-based powders fabricated by utilizing ultrasonic spray pyrolysis employing polymethylmethacrylate microspheres as a template. Sens. Actuator B 151, 265–273 (2010)CrossRef T. Hyodo, H. Inoue, H. Motomura, K. Matsuo, T. Hashishin, J. Tamaki, Y. Shimizu, M. Egashira, NO2 sensing properties of macroporous In2O3-based powders fabricated by utilizing ultrasonic spray pyrolysis employing polymethylmethacrylate microspheres as a template. Sens. Actuator B 151, 265–273 (2010)CrossRef
12.
go back to reference W. Wei, Y. Dai, B.B. Huang, Role of Cu doping in SnO2 sensing properties toward H2S. J. Phys. Chem. C 115, 18597–18602 (2011)CrossRef W. Wei, Y. Dai, B.B. Huang, Role of Cu doping in SnO2 sensing properties toward H2S. J. Phys. Chem. C 115, 18597–18602 (2011)CrossRef
13.
go back to reference Y.S. Shim, H.G. Moon, D.H. Kim, L.H. Zhang, S.J. Yoon, Y.S. Yoon, C.Y. Kang, H.W. Jang, Au decorated WO3 cross-linked nanodomes for ultrahigh sensitive and selective sensing of NO2 and C2H5OH. RSC Adv. 3, 10452–10459 (2013)CrossRef Y.S. Shim, H.G. Moon, D.H. Kim, L.H. Zhang, S.J. Yoon, Y.S. Yoon, C.Y. Kang, H.W. Jang, Au decorated WO3 cross-linked nanodomes for ultrahigh sensitive and selective sensing of NO2 and C2H5OH. RSC Adv. 3, 10452–10459 (2013)CrossRef
14.
go back to reference R. Nowrouzi, F. Razi, F. Rahimi, A.I. Zad, Catalytic effect of copper oxide on H2S sensing properties of nanostructured WO3. Sens. Lett. 11, 2015–2020 (2013)CrossRef R. Nowrouzi, F. Razi, F. Rahimi, A.I. Zad, Catalytic effect of copper oxide on H2S sensing properties of nanostructured WO3. Sens. Lett. 11, 2015–2020 (2013)CrossRef
15.
go back to reference S.Y. Liu, F. Zhang, H. Li, T. Chen, Y.D. Wang, Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sens. Actuator B 162, 259–268 (2012)CrossRef S.Y. Liu, F. Zhang, H. Li, T. Chen, Y.D. Wang, Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sens. Actuator B 162, 259–268 (2012)CrossRef
16.
go back to reference M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response. RSC Adv 4(22), 11012–11022 (2014)CrossRef M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response. RSC Adv 4(22), 11012–11022 (2014)CrossRef
17.
go back to reference V. Oison, L. Saadi, C. Lambert-Mauriat, R. Hayn, Mechanism of CO and O-3 sensing on WO3 surfaces: first principle study. Sens. Actuator B 160, 505–510 (2011)CrossRef V. Oison, L. Saadi, C. Lambert-Mauriat, R. Hayn, Mechanism of CO and O-3 sensing on WO3 surfaces: first principle study. Sens. Actuator B 160, 505–510 (2011)CrossRef
18.
go back to reference S.L. Bai, Y.Q. Ma, X. Shu, J.H. Sun, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Ghen, Doping metal elements of WO3 for enhancement of NO2-sensing performance at room temperature. Ind. Eng. Chem. Res. 56, 2616–2623 (2017)CrossRef S.L. Bai, Y.Q. Ma, X. Shu, J.H. Sun, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Ghen, Doping metal elements of WO3 for enhancement of NO2-sensing performance at room temperature. Ind. Eng. Chem. Res. 56, 2616–2623 (2017)CrossRef
19.
go back to reference S.K. Zhao, Y.B. Shen, P.F. Zhou, X.X. Zhong, C. Han, Q. Zhao, D.Z. Wei, Design of Au@WO3 core–shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuator B 282, 917–926 (2019)CrossRef S.K. Zhao, Y.B. Shen, P.F. Zhou, X.X. Zhong, C. Han, Q. Zhao, D.Z. Wei, Design of Au@WO3 core–shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuator B 282, 917–926 (2019)CrossRef
20.
go back to reference D. Meng, T. Yamazaki, Y.B. Shen, Z.F. Liu, T. Kikuta, Preparation of WO3 nanoparticles and application to NO2 sensor. Appl. Surf. Sci. 256, 1050–1053 (2009)CrossRef D. Meng, T. Yamazaki, Y.B. Shen, Z.F. Liu, T. Kikuta, Preparation of WO3 nanoparticles and application to NO2 sensor. Appl. Surf. Sci. 256, 1050–1053 (2009)CrossRef
21.
go back to reference Z.T. Meng, A. Fujii, T. Hashishin, N. Wada, T. Sanada, J. Tamaki, K. Kojima, H. Haneoka, T. Suzuki, Morphological and crystal structural control of tungsten trioxide for highly sensitive NO2 gas sensors. J. Mater. Chem. C 3, 1134–1141 (2015)CrossRef Z.T. Meng, A. Fujii, T. Hashishin, N. Wada, T. Sanada, J. Tamaki, K. Kojima, H. Haneoka, T. Suzuki, Morphological and crystal structural control of tungsten trioxide for highly sensitive NO2 gas sensors. J. Mater. Chem. C 3, 1134–1141 (2015)CrossRef
22.
go back to reference Y.X. Qin, M. Hu, J. Zhang, Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures. Sens. Actuator B 150, 339–345 (2010)CrossRef Y.X. Qin, M. Hu, J. Zhang, Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures. Sens. Actuator B 150, 339–345 (2010)CrossRef
23.
go back to reference S.L. Bai, K.W. Zhang, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem. 22, 12643–12650 (2012)CrossRef S.L. Bai, K.W. Zhang, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem. 22, 12643–12650 (2012)CrossRef
24.
go back to reference A.T. Mane, S.B. Kulkarni, S.T. Navale, A.A. Ghanwat, N.M. Shinde, J. Kim, V.B. Patil, NO2 sensing properties of nanostructured tungsten oxide thin films. Ceram. Int. 40, 16495–16502 (2014)CrossRef A.T. Mane, S.B. Kulkarni, S.T. Navale, A.A. Ghanwat, N.M. Shinde, J. Kim, V.B. Patil, NO2 sensing properties of nanostructured tungsten oxide thin films. Ceram. Int. 40, 16495–16502 (2014)CrossRef
25.
go back to reference J.W. Li, X. Liu, J.S. Cui, J.B. Sun, Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties. ACS Appl. Mater. Interfaces. 7, 10108–10114 (2015)CrossRef J.W. Li, X. Liu, J.S. Cui, J.B. Sun, Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties. ACS Appl. Mater. Interfaces. 7, 10108–10114 (2015)CrossRef
26.
go back to reference J.S. Kim, J.W. Yoon, Y.J. Hong, Y.C. Kang, F. Abdel-Hady, A.A. Wazzan, J.H. Lee, Highly sensitive and selective detection of ppb-level NO2 using multi-shelled WO3 yolk–shell spheres. Sens. Actuator B 229, 561–569 (2016)CrossRef J.S. Kim, J.W. Yoon, Y.J. Hong, Y.C. Kang, F. Abdel-Hady, A.A. Wazzan, J.H. Lee, Highly sensitive and selective detection of ppb-level NO2 using multi-shelled WO3 yolk–shell spheres. Sens. Actuator B 229, 561–569 (2016)CrossRef
27.
go back to reference M.J. Wang, T.Y. Hou, Z.R. Shen, X.D. Zhao, H.M. Ji, MOF-derived Fe2O3: phase control and effects of phase composition on gas sensing performance. Sens. Actuator B 292, 171–179 (2019)CrossRef M.J. Wang, T.Y. Hou, Z.R. Shen, X.D. Zhao, H.M. Ji, MOF-derived Fe2O3: phase control and effects of phase composition on gas sensing performance. Sens. Actuator B 292, 171–179 (2019)CrossRef
28.
go back to reference G.X. Ma, R.J. Zou, L. Jiang, Z.Y. Zhang, Y.F. Xue, L. Yu, G.S. Song, W.Y. Li, J.Q. Hu, Phase-controlled synthesis and gas-sensing properties of zinc stannate (ZnSnO3 and Zn2SnO4) faceted solid and hollow microcrystals. CrystEngComm 14, 2172–2179 (2012)CrossRef G.X. Ma, R.J. Zou, L. Jiang, Z.Y. Zhang, Y.F. Xue, L. Yu, G.S. Song, W.Y. Li, J.Q. Hu, Phase-controlled synthesis and gas-sensing properties of zinc stannate (ZnSnO3 and Zn2SnO4) faceted solid and hollow microcrystals. CrystEngComm 14, 2172–2179 (2012)CrossRef
29.
go back to reference X.Q. Wang, M.F. Zhang, J.Y. Liu, T. Luo, Y.T. Qian, Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sens. Actuator B 137, 103–110 (2009)CrossRef X.Q. Wang, M.F. Zhang, J.Y. Liu, T. Luo, Y.T. Qian, Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sens. Actuator B 137, 103–110 (2009)CrossRef
30.
go back to reference A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3(1), 154–165 (2011)CrossRef A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3(1), 154–165 (2011)CrossRef
31.
go back to reference I.M. Szilagyi, S. Saukko, J. Mizsei, A.L. Toth, J. Madarasz, G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 12(11), 1857–1860 (2010)CrossRef I.M. Szilagyi, S. Saukko, J. Mizsei, A.L. Toth, J. Madarasz, G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 12(11), 1857–1860 (2010)CrossRef
32.
go back to reference X.G. Han, X. Han, L. Li, C. Wang, Controlling the morphologies of WO3 particles and tuning the gas sensing properties. New J. Chem. 36, 2205–2208 (2012)CrossRef X.G. Han, X. Han, L. Li, C. Wang, Controlling the morphologies of WO3 particles and tuning the gas sensing properties. New J. Chem. 36, 2205–2208 (2012)CrossRef
33.
go back to reference Y.P. Xie, G. Liu, L.C. Yin, H.M. Cheng, Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 22(14), 6746–6751 (2012)CrossRef Y.P. Xie, G. Liu, L.C. Yin, H.M. Cheng, Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 22(14), 6746–6751 (2012)CrossRef
34.
go back to reference L. Zhou, Q.J. Ren, X.F. Zhou, J.W. Tang, Z.H. Chen, C.Z. Yu, Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous Mesoporous Mater. 109, 248–257 (2008)CrossRef L. Zhou, Q.J. Ren, X.F. Zhou, J.W. Tang, Z.H. Chen, C.Z. Yu, Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous Mesoporous Mater. 109, 248–257 (2008)CrossRef
35.
go back to reference A.G. Souza, J. Mendes, V.N. Freire, A.P. Ayala, J.M. Sasaki, P.T.C. Freire, F.E.A. Melo, J.F. Juliao, U.U. Gomes, Phase transition in WO3 microcrystals obtained by sintering process. J. Raman Spectrosc. 32, 695–699 (2001)CrossRef A.G. Souza, J. Mendes, V.N. Freire, A.P. Ayala, J.M. Sasaki, P.T.C. Freire, F.E.A. Melo, J.F. Juliao, U.U. Gomes, Phase transition in WO3 microcrystals obtained by sintering process. J. Raman Spectrosc. 32, 695–699 (2001)CrossRef
36.
go back to reference A.G. Souza, V.N. Freire, J.M. Sasaki, J. Mendes, J.F. Juliao, U.U. Gomes, Coexistence of triclinic and monoclinic phases in WO3 ceramics. J. Raman Spectrosc. 31, 451–454 (2000)CrossRef A.G. Souza, V.N. Freire, J.M. Sasaki, J. Mendes, J.F. Juliao, U.U. Gomes, Coexistence of triclinic and monoclinic phases in WO3 ceramics. J. Raman Spectrosc. 31, 451–454 (2000)CrossRef
37.
go back to reference A. Kuzmin, J. Purans, E. Cazzanelli, C. Vinegoni, G. Mariotto, X-ray diffraction, extended x-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1 − x)WO3·xReO2 mixtures. J. Appl. Phys. 84, 5515–5524 (1998)CrossRef A. Kuzmin, J. Purans, E. Cazzanelli, C. Vinegoni, G. Mariotto, X-ray diffraction, extended x-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1 − x)WO3·xReO2 mixtures. J. Appl. Phys. 84, 5515–5524 (1998)CrossRef
38.
go back to reference F. Zheng, M. Zhang, M. Guo, Controllable preparation of WO3 nanorod arrays by hydrothermal method. Thin Solid Films 534, 45–53 (2013)CrossRef F. Zheng, M. Zhang, M. Guo, Controllable preparation of WO3 nanorod arrays by hydrothermal method. Thin Solid Films 534, 45–53 (2013)CrossRef
39.
go back to reference C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRef C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRef
40.
go back to reference L.H. Zhao, F.H. Tian, X.B. Wang, W.W. Zhao, A.P. Fu, Y.Y. Shen, S.G. Chen, S.Q. Yu, Mechanism of CO adsorption on hexagonal WO3 (001) surface for gas sensing: a DFT study. Comput. Mater. Sci. 79, 691–697 (2013)CrossRef L.H. Zhao, F.H. Tian, X.B. Wang, W.W. Zhao, A.P. Fu, Y.Y. Shen, S.G. Chen, S.Q. Yu, Mechanism of CO adsorption on hexagonal WO3 (001) surface for gas sensing: a DFT study. Comput. Mater. Sci. 79, 691–697 (2013)CrossRef
Metadata
Title
Exposed crystal facets of WO3 nanosheets by phase control on NO2-sensing performance
Authors
Wanqing Song
Rui Zhang
Xue Bai
Qianqian Jia
Huiming Ji
Publication date
21-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 1/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02565-6

Other articles of this Issue 1/2020

Journal of Materials Science: Materials in Electronics 1/2020 Go to the issue