Skip to main content
Top
Published in: Cognitive Neurodynamics 4/2012

01-08-2012 | Research Article

Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat

Authors: Gaute T. Einevoll, Hans E. Plesser

Published in: Cognitive Neurodynamics | Issue 4/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A striking feature of the organization of the early visual pathway is the significant feedback from primary visual cortex to cells in the dorsal lateral geniculate nucleus (LGN). Despite numerous experimental and modeling studies, the functional role for this feedback remains elusive. We present a new firing-rate-based model for LGN relay cells in cat, explicitly accounting for thalamocortical loop effects. The established DOG model, here assumed to account for the spatial aspects of the feedforward processing of visual stimuli, is extended to incorporate the influence of thalamocortical loops including a full set of orientation-selective cortical cell populations. Assuming a phase-reversed push-pull arrangement of ON and OFF cortical feedback as seen experimentally, this extended DOG (eDOG) model exhibits linear firing properties despite non-linear firing characteristics of the corticothalamic cells. The spatiotemporal receptive field of the eDOG model has a simple algebraic structure in Fourier space, while the real-space receptive field, as well as responses to visual stimuli, are found by evaluation of an integral. As an example application we use the eDOG model to study effects of cortical feedback on responses to flashing circular spots and patch-grating stimuli and find that the eDOG model can qualitatively account for experimental findings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover, New York Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover, New York
go back to reference Ahlsén G, Grant K, Lindström S (1982) Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers. Brain Res 234:454–458PubMedCrossRef Ahlsén G, Grant K, Lindström S (1982) Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers. Brain Res 234:454–458PubMedCrossRef
go back to reference Andolina I, Wang W, Jones H, Salt T, Sillito A (2002) Effects of feedback on cat lgn cell spatial summation parameters dissected with the difference of gaussian model (DOGM). In: Society for neuroscience abstract, vol 32. Society for Neuroscience, Washington, DC, p 352.17 Andolina I, Wang W, Jones H, Salt T, Sillito A (2002) Effects of feedback on cat lgn cell spatial summation parameters dissected with the difference of gaussian model (DOGM). In: Society for neuroscience abstract, vol 32. Society for Neuroscience, Washington, DC, p 352.17
go back to reference Andolina I, Jones H, Wang W, Sillito A (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci 104:1685–1690PubMedCrossRef Andolina I, Jones H, Wang W, Sillito A (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci 104:1685–1690PubMedCrossRef
go back to reference Bracewell R (1986) The Fourier transform and its applications. McGraw-Hill, New York Bracewell R (1986) The Fourier transform and its applications. McGraw-Hill, New York
go back to reference Briggs F, Usrey W (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27:5431–5436PubMedCrossRef Briggs F, Usrey W (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27:5431–5436PubMedCrossRef
go back to reference Briggs F, Usrey W (2008) Emerging views of corticothalamic functionemerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407PubMedCrossRef Briggs F, Usrey W (2008) Emerging views of corticothalamic functionemerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407PubMedCrossRef
go back to reference Briggs F, Usrey W (2009) Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62:135–146PubMedCrossRef Briggs F, Usrey W (2009) Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62:135–146PubMedCrossRef
go back to reference Briggs F, Usrey W (2011) Corticogeniculate feedback and visual processing in the primate. J Physiol 589:33–40PubMedCrossRef Briggs F, Usrey W (2011) Corticogeniculate feedback and visual processing in the primate. J Physiol 589:33–40PubMedCrossRef
go back to reference Cheng H, Chino Y, Smith IE, Hamamoto J, Yoshida K (1995) Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast. J Neurophysiol 74:2548–2557PubMed Cheng H, Chino Y, Smith IE, Hamamoto J, Yoshida K (1995) Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast. J Neurophysiol 74:2548–2557PubMed
go back to reference Cudeiro J, Sillito A (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490:481–492PubMed Cudeiro J, Sillito A (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490:481–492PubMed
go back to reference Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, Cambridge Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, Cambridge
go back to reference Destexhe A (2000) Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol (Paris) 94:391–410CrossRef Destexhe A (2000) Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol (Paris) 94:391–410CrossRef
go back to reference Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016PubMed Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016PubMed
go back to reference Einevoll G, Heggelund P (2000) Mathematical models for the spatial receptive-field organization of nonlagged X cells in dorsal lateral geniculate nucleus of cat. Vis Neurosci 17:871–886PubMedCrossRef Einevoll G, Heggelund P (2000) Mathematical models for the spatial receptive-field organization of nonlagged X cells in dorsal lateral geniculate nucleus of cat. Vis Neurosci 17:871–886PubMedCrossRef
go back to reference Einevoll G, Plesser H (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Netw Comp Neur Syst 13:503–530CrossRef Einevoll G, Plesser H (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Netw Comp Neur Syst 13:503–530CrossRef
go back to reference Einevoll G, Plesser H (2003) Extended DOG receptive-field model for LGN relay cells incorporating cortical-feedback effects. In: Society for Neuroscience Abstracts, vol 33. Society for Neuroscience, Washington, DC, p 68.11 Einevoll G, Plesser H (2003) Extended DOG receptive-field model for LGN relay cells incorporating cortical-feedback effects. In: Society for Neuroscience Abstracts, vol 33. Society for Neuroscience, Washington, DC, p 68.11
go back to reference Einevoll G, Plesser H (2005) Response of the difference-of-gaussians model to circular drifting-grating patches. Vis Neurosci 22:437–446PubMedCrossRef Einevoll G, Plesser H (2005) Response of the difference-of-gaussians model to circular drifting-grating patches. Vis Neurosci 22:437–446PubMedCrossRef
go back to reference Geisert E, Langsetmo A, Spear P (1981) Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain Res 208:409–415PubMedCrossRef Geisert E, Langsetmo A, Spear P (1981) Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain Res 208:409–415PubMedCrossRef
go back to reference Godwin D, Vaughan J, Sherman S (1996) Metabotropic glutamate receptors switch visual response mode of lateral geniculate cells from burst to tonic. J Neurophysiol 76:1800–1816PubMed Godwin D, Vaughan J, Sherman S (1996) Metabotropic glutamate receptors switch visual response mode of lateral geniculate cells from burst to tonic. J Neurophysiol 76:1800–1816PubMed
go back to reference Grieve K, Sillito A (1995) Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J Neurosci 15:4868–4874PubMed Grieve K, Sillito A (1995) Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J Neurosci 15:4868–4874PubMed
go back to reference Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18:865–877PubMed Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18:865–877PubMed
go back to reference Heeger D (1991) Nonlinear model of neural responses in cat visual cortex. In: Landy M, Movshon J (eds) Computational models of visual processing, MIT Press, Cambridge, pp 119–134 Heeger D (1991) Nonlinear model of neural responses in cat visual cortex. In: Landy M, Movshon J (eds) Computational models of visual processing, MIT Press, Cambridge, pp 119–134
go back to reference Hillenbrand U, van Hemmen L (2000) Spatiotemporal adaptation through corticothalamic loops: a hypothesis. Vis Neurosci 17:107–118PubMedCrossRef Hillenbrand U, van Hemmen L (2000) Spatiotemporal adaptation through corticothalamic loops: a hypothesis. Vis Neurosci 17:107–118PubMedCrossRef
go back to reference Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMed Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMed
go back to reference Jing W, Liu W-Z, Gong X-W, Gong H-Q, Liang P-J (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cogn Neurodyn 3:179–188CrossRef Jing W, Liu W-Z, Gong X-W, Gong H-Q, Liang P-J (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cogn Neurodyn 3:179–188CrossRef
go back to reference Jones H, Andolina I, Oakely N, Murphy P, Sillito A (2000) Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res 135:279–284PubMedCrossRef Jones H, Andolina I, Oakely N, Murphy P, Sillito A (2000) Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res 135:279–284PubMedCrossRef
go back to reference Kirkland K, Gerstein G (1998) A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vis Res 38:2007–2022PubMedCrossRef Kirkland K, Gerstein G (1998) A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vis Res 38:2007–2022PubMedCrossRef
go back to reference Kirkland K, Sillito A, Jones H, West D, Gerstein G (2000) Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. J Neurophysiol 84:1863–1868PubMed Kirkland K, Sillito A, Jones H, West D, Gerstein G (2000) Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. J Neurophysiol 84:1863–1868PubMed
go back to reference Köhn J, Wörgötter F (1996) Corticofugal feedback can reduce the visual latency of responses to visual stimuli. Biol Cybern 75:199–209PubMedCrossRef Köhn J, Wörgötter F (1996) Corticofugal feedback can reduce the visual latency of responses to visual stimuli. Biol Cybern 75:199–209PubMedCrossRef
go back to reference Liang L, Wang R, Zhang Z (2010) The modeling and simulation of visuospatial working memory. Cogn Neurodyn 4:359–366PubMedCrossRef Liang L, Wang R, Zhang Z (2010) The modeling and simulation of visuospatial working memory. Cogn Neurodyn 4:359–366PubMedCrossRef
go back to reference Marrocco R, McClurkin J, Young R (1982) Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2:256–263PubMed Marrocco R, McClurkin J, Young R (1982) Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2:256–263PubMed
go back to reference Marrocco R, McClurkin J, Alkire M (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate cells. Brain Res 737:110–118PubMedCrossRef Marrocco R, McClurkin J, Alkire M (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate cells. Brain Res 737:110–118PubMedCrossRef
go back to reference Mayer J, Schuster H, Claussen J, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99:68–102CrossRef Mayer J, Schuster H, Claussen J, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99:68–102CrossRef
go back to reference McClurkin J, Marrocco R (1984) Cortical input to the monkey lateral geniculate nucleus alters visual spatial tuning in monkey lateral geniculate nucleus cells. J Physiol (Lond) 348:135–152 McClurkin J, Marrocco R (1984) Cortical input to the monkey lateral geniculate nucleus alters visual spatial tuning in monkey lateral geniculate nucleus cells. J Physiol (Lond) 348:135–152
go back to reference McClurkin J, Optican L, Richmond B (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11:601–617PubMedCrossRef McClurkin J, Optican L, Richmond B (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11:601–617PubMedCrossRef
go back to reference McCormick D, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Nat Acad Sci 89:2774–2778PubMedCrossRef McCormick D, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Nat Acad Sci 89:2774–2778PubMedCrossRef
go back to reference Murphy P, Sillito A (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329:727–729PubMedCrossRef Murphy P, Sillito A (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329:727–729PubMedCrossRef
go back to reference Murphy P, Sillito A (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16:1180–1192PubMed Murphy P, Sillito A (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16:1180–1192PubMed
go back to reference Murphy P, Duckett S, Sillito A (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286:1552–1554PubMedCrossRef Murphy P, Duckett S, Sillito A (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286:1552–1554PubMedCrossRef
go back to reference Norheim E, Wyller J, Nordlie E, Einevoll G (2011) Feedback and feedforward contributions to temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn (submitted) Norheim E, Wyller J, Nordlie E, Einevoll G (2011) Feedback and feedforward contributions to temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn (submitted)
go back to reference Reid C, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–284PubMedCrossRef Reid C, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–284PubMedCrossRef
go back to reference Rodieck R (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5:583–601PubMedCrossRef Rodieck R (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5:583–601PubMedCrossRef
go back to reference Saglam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 1:25–32CrossRef Saglam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 1:25–32CrossRef
go back to reference Sherman S, Guillery R (2001) Exploring the thalamus. Academic Press, New York Sherman S, Guillery R (2001) Exploring the thalamus. Academic Press, New York
go back to reference Sillito A, Jones H (2002) Corticothalamic interactions in the transfer of visual information. Phil Trans R Soc Lond B 357:1739–1752CrossRef Sillito A, Jones H (2002) Corticothalamic interactions in the transfer of visual information. Phil Trans R Soc Lond B 357:1739–1752CrossRef
go back to reference Sillito A, Jones H (2004) Feedback systems in visual processing. In: The visual neurosciences, vol 1, MIT Press, Cambridge, pp 609–624 Sillito A, Jones H (2004) Feedback systems in visual processing. In: The visual neurosciences, vol 1, MIT Press, Cambridge, pp 609–624
go back to reference Sillito A, Cudeiro J, Murphy P (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93:6–16PubMedCrossRef Sillito A, Cudeiro J, Murphy P (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93:6–16PubMedCrossRef
go back to reference Sillito A, Jones H, Gerstein G, West D (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369:479–482PubMedCrossRef Sillito A, Jones H, Gerstein G, West D (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369:479–482PubMedCrossRef
go back to reference So Y, Shapley R (1981) Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. J Neurophys 45:107–120 So Y, Shapley R (1981) Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. J Neurophys 45:107–120
go back to reference Troyer T, Krukowski A, Priebe N, Miller K (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927PubMed Troyer T, Krukowski A, Priebe N, Miller K (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927PubMed
go back to reference Troyer T, Krukowski A, Miller K (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87:2741–2752PubMed Troyer T, Krukowski A, Miller K (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87:2741–2752PubMed
go back to reference Vidyasagar T, Urbas J (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46:157–169PubMedCrossRef Vidyasagar T, Urbas J (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46:157–169PubMedCrossRef
go back to reference Wang R, Zhang Z (2007) Energy coding in biological neural networks. Cogn Neurodyn 3:203–212CrossRef Wang R, Zhang Z (2007) Energy coding in biological neural networks. Cogn Neurodyn 3:203–212CrossRef
go back to reference Wang W, Jones H, Andolina I, Salt T, Sillito A (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nature Neurosci 9:1330–1336PubMedCrossRef Wang W, Jones H, Andolina I, Salt T, Sillito A (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nature Neurosci 9:1330–1336PubMedCrossRef
go back to reference Weber A, Kalil R, Behan M (1989) Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 289:156–164PubMedCrossRef Weber A, Kalil R, Behan M (1989) Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 289:156–164PubMedCrossRef
go back to reference Wörgötter F, Nelle E, Li B, Funke K (1998) The influence of corticofugal feedback on the temporal structure of visual response of cat thalamic relay cells. J Physiol 509:797–815PubMedCrossRef Wörgötter F, Nelle E, Li B, Funke K (1998) The influence of corticofugal feedback on the temporal structure of visual response of cat thalamic relay cells. J Physiol 509:797–815PubMedCrossRef
go back to reference Yousif N, Denham M (2007) The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational study. Biol Cybern 97:269–277PubMedCrossRef Yousif N, Denham M (2007) The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational study. Biol Cybern 97:269–277PubMedCrossRef
Metadata
Title
Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat
Authors
Gaute T. Einevoll
Hans E. Plesser
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 4/2012
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-011-9183-8

Other articles of this Issue 4/2012

Cognitive Neurodynamics 4/2012 Go to the issue