Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Extensions of different type parameterized inequalities for generalized \((m,h)\)-preinvex mappings via k-fractional integrals

Authors: Yao Zhang, Ting-Song Du, Hao Wang, Yan-Jun Shen, Artion Kashuri

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized \((m,h)\)-preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The subsequent inequalities are notable in the literature as Hermite–Hadamard’s inequality and Simpson’s inequality, respectively.
Theorem 1.1
Suppose that \(f:I\subseteq \mathbb{R}\rightarrow \mathbb{R}\) is a convex function defined on the interval I of real numbers and \(a,b\in I\) along with \(a< b\). The following double inequality holds:
$$ f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x\leq \frac{f(a)+f(b)}{2}. $$
Theorem 1.2
Assume that \(f:[a,b]\rightarrow \mathbb{R}\) is a four times continuously differentiable mapping on \((a,b)\) and \(\Vert f^{(4)} \Vert _{\infty }=\mathrm{sup}_{x\in (a,b)} \vert f^{(4)}(x) \vert <\infty \). Then the following inequality holds:
$$ \biggl\vert \frac{1}{3} \biggl[ \frac{f(a)+f(b)}{2}+2f \biggl(\frac{a+b}{2} \biggr) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \leq \frac{1}{2880} \bigl\Vert f^{(4)} \bigr\Vert _{\infty }(b-a)^{4}. $$
Hermite–Hadamard’s inequalities and Simpson’s inequalities have remained an area of great interest owing to their extensive applications in mathematics and other sciences. Many researchers generalized these inequalities. For recent results, for example, see [18] and the references mentioned in these papers.
In 2013, Sarikaya et al. established the subsequent interesting Hermite–Hadamard’s inequalities by utilizing Riemann–Liouville fractional integrals.
Theorem 1.3
([9])
Let \(f:[a,b]\rightarrow \mathbb{R}\) be a positive function along with \(0\leq a< b\), and let \(f\in L^{1}[a,b]\). Suppose that f is a convex function on \([a,b]\), then the following inequalities for fractional integrals hold:
$$ f \biggl(\frac{a+b}{2} \biggr) \leq \frac{\Gamma (\mu +1)}{2(b-a)^{\mu }}\bigl[J^{\mu }_{a^{+}}f(b)+J^{\mu }_{b^{-}}f(a) \bigr]\leq \frac{f(a)+f(b)}{2}, $$
(1.1)
where the symbols \(J^{\mu }_{a^{+}} f\) and \(J^{\mu }_{b^{-}} f\) denote respectively the left-sided and right-sided Riemann–Liouville fractional integrals of order \(\mu >0\) defined by
$$ J^{\mu }_{a^{+}}f(x) = \frac{1}{\Gamma (\mu )} \int ^{x}_{a}(x-t)^{\mu -1}f(t)\,\mathrm{d}t, \quad a< x, $$
and
$$ J^{\mu }_{b^{-}}f(x) = \frac{1}{\Gamma (\mu )} \int ^{b}_{x}(t-x)^{\mu -1}f(t)\,\mathrm{d}t, \quad x< b. $$
Here, \(\Gamma (\mu )\) is the gamma function and its definition is \(\Gamma (\mu )=\int _{0}^{\infty }e^{-t}t^{\mu -1}\,\mathrm{d}t\). It is to be noted that \(J^{0}_{a^{+}}f(x)=J^{0}_{b^{-}}f(x)=f(x)\).
In the case of \(\mu =1\), the fractional integral recaptures the classical integral.
Because of the extensive application of Riemann–Liouville fractional integrals, some authors extended their studies to fractional Hermite–Hadamard’s inequalities via mappings of different classes. For example, refer to [1012] for convex mappings, to [13] for s-convex mappings, to [14] for \((s,m)\)-convex mappings, to [15] for s-Godunova–Levin mappings, to [16] for harmonically convex mappings, to [17] for preinvex mappings, to [18] for MT m -preinvex mappings, to [19] for h-convex mappings, to [20] for r-convex mappings, and see the references cited therein.
In 2012, Mubeen and Habibullah introduced the following class of fractional integrals.
Definition 1.1
([21])
Let \(f\in L^{1}[a,b]\), then the Riemann–Liouville k-fractional integrals \({}_{k}J^{\mu }_{a^{+}}f(x)\) and \({}_{k}J^{\mu }_{b^{-}}f(x)\) of order \(\mu >0\) are given as
$$ {}_{k}J^{\mu }_{a^{+}}f(x) = \frac{1}{k\Gamma _{k}(\mu )} \int ^{x}_{a}(x-t)^{\frac{\mu }{k}-1}f(t)\,\mathrm{d}t \quad (0\leq a< x< b) $$
and
$$ {} _{k}J^{\mu }_{b^{-}}f(x) = \frac{1}{k\Gamma _{k}(\mu )} \int ^{b}_{x}(t-x)^{\frac{\mu }{k}-1}f(t)\,\mathrm{d}t\quad (0\leq a< x< b), $$
respectively, where \(k>0\) and \(\Gamma _{k}(\mu )\) is the k-gamma function defined by \(\Gamma _{k}(\mu )=\int ^{\infty }_{0} t^{\mu -1} e^{-\frac{t^{k}}{k}}\,\mathrm{d}t\). Furthermore, \(\Gamma _{k}(\mu +k)=\mu \Gamma _{k}(\mu )\) and \({}_{k}J^{0}_{a^{+}}f(x)={}_{k}J^{0}_{b^{-}}f(x)=f(x)\).
The concept of Riemann–Liouville k-fractional integral is an important generalization of Riemann–Liouville fractional integrals. We would like to stress here that for \(k\neq 1\) the properties of Riemann–Liouville k-fractional integrals are very dissimilar to those of classical Riemann–Liouville fractional integrals. Due to this, the Riemann–Liouville k-fractional integrals have aroused many researchers’ interest. Properties and estimations for the integral inequality related to this operator can be sought out in [2227] and the references cited therein.
The main purpose of the current paper is to establish some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for mappings whose absolute values of second derivatives are generalized \((m,h)\)-preinvex. To do this, the authors derive a general k-fractional integral identity along with multi parameters for twice differentiable mappings. By using this integral identity, the authors derive some new inequalities of Simpson and Hermite–Hadamard type for these mappings.
To end this section, we restate some special functions and definitions as follows.
Let us consider the following special functions:
(1)
The beta function:
$$ \begin{aligned} \beta (x,y)=\frac{\Gamma (x)\Gamma (y)}{\Gamma (x+y)}= \int ^{1}_{0}t^{x-1}(1-t)^{y-1}\,\mathrm{d}t, \quad x,y>0; \end{aligned} $$
 
(2)
The incomplete beta function:
$$ \begin{aligned} \beta (a;x,y)= \int ^{a}_{0}t^{x-1}(1-t)^{y-1}\,\mathrm{d}t, \quad 0< a< 1,x,y>0; \end{aligned} $$
 
(3)
The hypergeometric function:
$$ {}_{2}F_{1}(a,b;c;z)= \frac{1}{\beta (b,c-b)} \int ^{1}_{0} t^{b-1}(1-t)^{c-b-1}(1-zt)^{-a}\,\mathrm{d}t,\quad c>b>0,\vert z \vert < 1. $$
 
Definition 1.2
([28])
A function \(f : [0,\infty )\rightarrow \mathbb{R}\) is named s-convex in the second sense along with \(s\in (0,1]\) if
$$ \begin{aligned} f(\alpha x +\beta y)\leq \alpha ^{s} f(x)+ \beta ^{s} f(y) \end{aligned} $$
holds for all \(x,y\in [0,\infty )\) and \(\alpha ,\beta \geq 0\) along with \(\alpha +\beta =1\).
Definition 1.3
([29])
A function \(f :A \subseteq \mathbb{R}\rightarrow \mathbb{R}\) is called s-Godunova–Levin function of the second kind along with \(s\in [0,1]\) if
$$ \begin{aligned} f \bigl(tx+(1-t)y \bigr)\leq \frac{f(x)}{t^{s}}+ \frac{f(y)}{(1-t)^{s}} \end{aligned} $$
holds for all \(x,y\in A\) and \(t\in (0,1)\).
Definition 1.4
([30])
A function \(f:A\subseteq \mathbb{R}\rightarrow \mathbb{R}\) is named \(tgs\)-convex on A if f is non-negative and
$$ f \bigl(tx+ (1-t)y \bigr)\leq t(1-t)\bigl[f(x)+f(y) \bigr] $$
holds for all \(x, y \in A \) and \(t\in (0,1)\).
Definition 1.5
([31])
A function \(f: A\subseteq \mathbb{R}\rightarrow \mathbb{R}\) is called MT-convex if f is non-negative and
$$ f \bigl(tx+(1-t)y \bigr)\leq \frac{\sqrt{t}}{2\sqrt{1-t}}f(x)+\frac{\sqrt{1-t}}{2\sqrt{t}}f(y) $$
holds for all \(x,y\in A\) and \(t\in (0, 1)\).
Definition 1.6
([32])
A set \(A\subseteq \mathbb{R}^{n}\) is called m-invex with respect to the mapping \(\eta :A \times A\times (0, 1]\rightarrow \mathbb{R}^{n}\) for some fixed \(m\in (0, 1]\) if \(mx+\lambda \eta (y, x, m) \in A\) holds for all \(x, y \in A\) and \(\lambda \in [0, 1]\).
Definition 1.7
([33])
Let \(A \subseteq \mathbb{R}\) be an open m-invex subset with respect to \(\eta : A \times A \times (0,1]\rightarrow \mathbb{R}\), and let \(h_{1}, h_{2} :[0,1]\rightarrow \mathbb{R}_{0}\). A function \(f:A\rightarrow \mathbb{R}\) is said to be generalized \((m, h_{1}, h_{2})\)-preinvex if
$$ f \bigl(m x+ t\eta (y, x, m) \bigr)\leq mh_{1}(t) f(x)+ h_{2}(t) f(y) $$
(1.2)
is valid for all \(x, y \in A\) and \(t \in [0, 1]\). If inequality (1.2) reverses, then f is said to be generalized \((m, h_{1}, h_{2})\)-preincave on A.
Clearly, if we take \(h_{1}(t)=h(1-t)\), \(h_{2}(t)=h(t)\) in Definition 1.7, then f becomes generalized \((m,h)\)-preinvex functions as follows.
Definition 1.8
Let \(A\subseteq \mathbb{R}\) be an open m-invex subset with respect to \(\eta : A\times A\times (0,1] \rightarrow \mathbb{R}\), and let \(h :[0,1]\rightarrow \mathbb{R}_{0}\). A function \(f:A\rightarrow \mathbb{R}\) is called generalized \((m,h)\)-preinvex if
$$ f \bigl(mx+t\eta (y,x,m) \bigr)\leq h(t)f(y)+mh(1-t)f(x) $$
(1.3)
is valid for all \(x, y \in A\) and \(t \in [0,1]\).
Remark 1.1
Let us discuss some special cases of Definition 1.8 as follows:
(i)
choosing \(h(t)=1\), we obtain the definition of generalized \((m,P)\)-preinvex functions;
 
(ii)
choosing \(h(t)=t^{s}\) for \(s\in (0,1]\), we obtain the definition of generalized \((m,s)\)-Breckner-preinvex functions;
 
(iii)
choosing \(h(t)=t^{-s}\) for \(s\in (0,1)\), we obtain the definition of generalized \((m,s)\)-Godunova–Levin–Dragomir-preinvex functions;
 
(iv)
choosing \(h(t)=t(1-t)\), we obtain the definition of generalized \((m, tgs)\)-preinvex functions;
 
(v)
choosing \(h(t)=\frac{\sqrt{t}}{2\sqrt{1-t}}\), we obtain the definition of generalized m-MT-preinvex functions.
 
It is worth mentioning here that, as far as we know, all the special cases considered above are new in the literature.

2 Main results

In order to derive our main results, we need the subsequent identity.
Lemma 2.1
Let \(A\subseteq \mathbb{R}\) be an open m-invex subset with respect to \(\eta : A\times A\times (0,1] \rightarrow \mathbb{R}\setminus \{0\}\) for some fixed \(m \in (0,1]\), and let \(a, b \in A\), \(a< b\) with \(\eta (b,a,m)>0\). Assume that \(f:A\rightarrow \mathbb{R}\) is a twice differentiable function on A such that \(f''\) is integrable on \([ma,ma+\eta (b,a,m) ]\). Then the following identity for Riemann–Liouville k-fractional integrals along with \(x \in [a, b]\), \(\lambda \in [0, 1]\), \(\mu > 0\), and \(k>0\) exists:
$$\begin{aligned} &I_{f, \eta }(\mu ,k;x,\lambda ,m,a,b) \\ &\quad =\frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \int ^{1}_{0}t \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr] f'' \bigl(ma+t \eta (x,a,m) \bigr)\,\mathrm{d}t \\ &\quad \quad {} +\frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \int ^{1}_{0}t \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr] f'' \bigl(mb+t \eta (x,b,m) \bigr)\,\mathrm{d}t, \end{aligned}$$
(2.1)
where
$$\begin{aligned} &I_{f, \eta }(\mu ,k;x,\lambda ,m,a,b) \\ &\quad:=\frac{1-\lambda }{\eta (b,a,m)} \bigl[\eta ^{\frac{\mu }{k}}(x,a,m)f \bigl(ma+\eta (x,a,m) \bigr) \\ &\quad\quad {} +(-1)^{\frac{\mu }{k}}\eta ^{\frac{\mu }{k}}(x,b,m)f \bigl(mb+\eta (x,b,m) \bigr) \bigr] \\ &\quad\quad {} +\frac{\lambda }{\eta (b,a,m)} \bigl[\eta ^{\frac{\mu }{k}}(x,a,m)f(ma) +(-1)^{\frac{\mu }{k}}\eta ^{\frac{\mu }{k}}(x,b,m)f(mb) \bigr] \\ &\quad\quad {} +\frac{\frac{1}{\frac{\mu }{k}+1}-\lambda }{\eta (b,a,m)} \bigl[(-1)^{\frac{\mu }{k}+1}\eta ^{\frac{\mu }{k}+1}(x,b,m)f' \bigl(mb+\eta (x,b,m) \bigr) \\ &\quad\quad {} -\eta ^{\frac{\mu }{k}+1}(x,a,m)f' \bigl(ma+\eta (x,a,m) \bigr) \bigr] \\ &\quad \quad -\frac{\Gamma _{k}(\mu +k)}{\eta (b,a,m)} \bigl[{}_{k}J^{\mu }_{(ma+\eta (x,a,m))^{-}} f(ma)+{}_{k}J^{\mu }_{(mb+\eta (x,b,m))^{+}}f(mb) \bigr] \end{aligned}$$
and \(\Gamma _{k}\) is the k-gamma function.
Proof
By integration by parts and replacing the variable, we can state
$$\begin{aligned} &\int ^{1}_{0}t \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr]f'' \bigl(ma+t \eta (x,a,m) \bigr)\,\mathrm{d}t \\ &\quad =t \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr] \frac{f' (ma+t\eta (x,a,m) )}{\eta (x,a,m)} \bigg| _{0}^{1} \\ &\quad \quad {} -\frac{\frac{\mu }{k}+1}{\eta (x,a,m)} \int ^{1}_{0} \bigl(\lambda -t^{\frac{\mu }{k}} \bigr)f' \bigl(ma+t\eta (x,a,m) \bigr)\,\mathrm{d}t \\ &\quad = \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -1 \biggr] \frac{f' (ma+\eta (x,a,m) )}{\eta (x,a,m)} \\ &\quad \quad {} -\frac{\frac{\mu }{k}+1}{\eta (x,a,m)} \biggl[ \bigl(\lambda -t^{\frac{\mu }{k}} \bigr) \frac{f (ma+t\eta (x,a,m) )}{\eta (x,a,m)} \bigg| _{0}^{1} \\ &\quad \quad {} + \int ^{1}_{0}\frac{\mu }{k}t^{\frac{\mu }{k}-1} \frac{f (ma+t\eta (x,a,m) )}{\eta (x,a,m)}\,\mathrm{d}t \biggr] \\ &\quad = \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -1 \biggr] \frac{f' (ma+\eta (x,a,m) )}{\eta (x,a,m)} \\ &\quad \quad {} +\frac{\frac{\mu }{k}+1}{\eta ^{2}(x,a,m)} \biggl[(1-\lambda )f \bigl(ma+\eta (x,a,m) \bigr)+ \lambda f(ma) \\ &\quad \quad {} -\frac{\frac{\mu }{k}}{\eta ^{\frac{\mu }{k}}(x,a,m)}\int ^{ma+\eta (x,a,m)}_{ma}(u-ma)^{\frac{\mu }{k}-1}f(u)\,\mathrm{d}u \biggr] \\ &\quad = \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -1 \biggr]\frac{f' (ma+\eta (x,a,m) )}{\eta (x,a,m)} \\ &\quad \quad {} +\frac{\frac{\mu }{k}+1}{\eta ^{2}(x,a,m)} \biggl[(1-\lambda )f \bigl(ma+\eta (x,a,m) \bigr)+ \lambda f(ma) \\ &\quad \quad {} -\frac{\Gamma _{k}(\mu +k)}{\eta ^{\frac{\mu }{k}}(x,a,m)}{}_{k}J^{\mu }_{(ma+\eta (x,a,m))^{-}}f(ma)\biggr]. \end{aligned}$$
(2.2)
Similarly, we get
$$\begin{aligned} &\int ^{1}_{0}t \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr]f'' \bigl(mb+t \eta (x,b,m) \bigr)\,\mathrm{d}t \\ &\quad = \biggl[ \biggl(\frac{\mu }{k}+1 \biggr)\lambda -1 \biggr] \frac{f' (mb+\eta (x,b,m) )}{\eta (x,b,m)} \\ &\quad \quad {} +\frac{\frac{\mu }{k}+1}{\eta ^{2}(x,b,m)} \biggl[(1-\lambda )f \bigl(mb+\eta (x,b,m) \bigr)+ \lambda f(mb) \\ &\quad \quad {} -\frac{\Gamma _{k}(\mu +k)}{\eta ^{\frac{\mu }{k}}(x,b,m)}{}_{k}J^{\mu }_{(ma+\eta (x,b,m))^{-}}f(mb)\biggr]. \end{aligned}$$
(2.3)
Multiplying both sides of (2.2) and (2.3) by \(\frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)}\) and \(\frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)}\), respectively, and adding the resulting identities together, we obtain the desired result. □
Remark 2.1
In Lemma 2.1, if we put \(k=1\) and \(\eta (b,a,m)=b-ma\) along with \(m=1\), then we get the following identity:
$$\begin{aligned} &(1-\lambda ) \biggl[\frac{(x-a)^{\mu }+(b-x)^{\mu }}{b-a} \biggr]f(x)+ \lambda \biggl[\frac{(x-a)^{\mu }f(a)+(b-x)^{\mu }f(b)}{b-a} \biggr] \\ &\quad \quad {} + \biggl(\frac{1}{\mu +1}-\lambda \biggr) \biggl[\frac{(b-x)^{\mu +1}-(x-a)^{\mu +1}}{b-a} \biggr]f'(x)-\frac{\Gamma (\mu +1)}{b-a} \bigl[J^{\mu }_{x^{-}}f(a)+J^{\mu }_{x^{+}}f(b) \bigr] \\ &\quad =\frac{(x-a)^{\mu +2}}{(\mu +1)(b-a)} \int ^{1}_{0}t \bigl[ (\mu +1 )\lambda -t^{\mu } \bigr]f'' \bigl(tx+(1-t)a \bigr)\,\mathrm{d}t \\ &\quad \quad {} +\frac{(b-x)^{\mu +2}}{(\mu +1)(b-a)} \int ^{1}_{0}t \bigl[ (\mu +1 )\lambda -t^{\mu } \bigr]f'' \bigl(tx+(1-t)b \bigr)\,\mathrm{d}t, \end{aligned}$$
which is proved by İşcan in [34]. Further, if we put \(\mu =1, \lambda =\frac{1}{2}\), and \(x=a\) or \(x=b\), then the above identity recaptures Lemma 1 in [35].
Using Lemma 2.1, we now state the following theorem.
Theorem 2.1
Let \(A\subseteq \mathbb{R}\) be an open m-invex subset with respect to \(\eta : A\times A\times (0,1] \rightarrow \mathbb{R}\setminus \{0\}\) for some fixed \(m \in (0,1]\), and let \(a, b \in A\), \(a< b\) with \(\eta (b,a,m)>0\). Assume that \(f:A\rightarrow \mathbb{R}\) is a twice differentiable function on A such that \(f''\) is integrable on \([ma,ma+\eta (b,a,m) ]\). If \(\vert f'' \vert ^{q}\) for \(q\geq 1\) is a generalized \((m,h)\)-preinvex function with respect to η and \(h:[0,1]\rightarrow \mathbb{R}_{0}\), then the following inequality for k-fractional integrals with \(x \in [a,b]\), \(\lambda \in [0, 1]\), \(\mu > 0\), \(k>0\) exists:
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}C_{1}(k,\mu ,\lambda ;h) \\ &\quad \quad {} +m \bigl\vert f''(a) \bigr\vert ^{q}C_{2}(k,\mu ,\lambda ;h) \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}C_{1}(k, \mu ,\lambda ;h) \\ &\quad \quad {} +m \bigl\vert f''(b) \bigr\vert ^{q}C_{2}(k,\mu ,\lambda ;h) \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(2.4)
where
$$\begin{aligned} &C_{0}(k,\mu ,\lambda )= \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \,\mathrm{d}t \\ &\hphantom{C_{0}(k,\mu ,\lambda )}=\textstyle\begin{cases} \frac{\frac{\mu }{k}[(\frac{\mu }{k}+1)\lambda ]^{1+\frac{2k}{\mu }}}{\frac{\mu }{k}+2}-\frac{(\frac{\mu }{k}+1)\lambda }{2}+\frac{1}{\frac{\mu }{k}+2},&0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{(\frac{\mu }{k}+1)\lambda }{2}-\frac{1}{\frac{\mu }{k}+2},&\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \end{aligned}$$
(2.5)
$$\begin{aligned} & C_{1}(k,\mu ,\lambda ;h)= \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert h(t)\,\mathrm{d}t,\quad 0\leq \lambda \leq 1, \end{aligned}$$
(2.6)
and
$$ C_{2}(k,\mu ,\lambda ;h)= \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert h(1-t)\,\mathrm{d}t,\quad 0\leq \lambda \leq 1. $$
(2.7)
Proof
Applying Lemma 2.1 and the power mean inequality, we have
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda,m,a,b) \bigr\vert \\ &\quad\leq \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert \,\mathrm{d}t \\ &\quad\quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert \,\mathrm{d}t \\ &\quad\leq \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl( \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \,\mathrm{d}t \biggr)^{1-\frac{1}{q}} \\ &\quad\quad {} \times \biggl(\int ^{1}_{0}t \biggl\vert \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \biggr)^{\frac{1}{q}} \\ &\quad\quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl( \int ^{1}_{0}t \biggl\vert \biggl(\frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \,\mathrm{d}t \biggr)^{1-\frac{1}{q}} \\ &\quad\quad {} \times \biggl(\int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \biggr)^{\frac{1}{q}} \\ &\quad =C_{0}^{1-\frac{1}{q}}(k,\mu,\lambda ) \\ &\quad \quad {} \times \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl( \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \biggr)^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl( \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda \\ &\quad \quad {} -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.8)
Since \(\vert f'' \vert ^{q}\) is generalized \((m,h)\)-preinvex on \([ma,ma+\eta (b,a,m) ]\), we get
$$\begin{aligned} &\int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \\ &\quad \leq \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl[h(t) \bigl\vert f''(x) \bigr\vert ^{q}+mh(1-t) \bigl\vert f''(a) \bigr\vert ^{q} \bigr]\,\mathrm{d}t \\ &\quad = \bigl\vert f''(x) \bigr\vert ^{q}C_{1}(k,\mu ,\lambda ;h)+m \bigl\vert f''(a) \bigr\vert ^{q}C_{2}(k, \mu ,\lambda ;h) \end{aligned}$$
(2.9)
and
$$\begin{aligned} & \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \\ &\quad \leq \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl[h(t) \bigl\vert f''(x) \bigr\vert ^{q}+mh(1-t) \bigl\vert f''(b) \bigr\vert ^{q} \bigr]\,\mathrm{d}t \\ &\quad = \bigl\vert f''(x) \bigr\vert ^{q}C_{1}(k,\mu ,\lambda ;h)+m \bigl\vert f''(b) \bigr\vert ^{q}C_{2}(k, \mu ,\lambda ;h), \end{aligned}$$
(2.10)
where \(C_{0}(k,\mu ,\lambda )\), \(C_{1}(k,\mu ,\lambda ;h)\), and \(C_{2}(k,\mu ,\lambda ;h)\) are defined by (2.5)–(2.7), respectively. Hence, if we use (2.9) and (2.10) in (2.8), we can get the desired result. This completes the proof. □
Let us point out some special cases of Theorem 2.1.
I. If \(h(t)=t^{s}\) in Theorem 2.1, then we have the following results.
Corollary 2.1
In Theorem 2.1, if \(\vert f'' \vert ^{q}\) for \(q\geq 1\) is generalized \((m,s)\)-Breckner-preinvex functions, then, for \(s\in (0,1]\) and \(m\in (0,1]\), we have
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad\leq C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \\ &\quad\quad {} \times \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}T_{1}(k, \mu ,\lambda ;s)+m \bigl\vert f''(a) \bigr\vert ^{q}T_{2}(k,\mu ,\lambda ;s) \bigr]^{\frac{1}{q}} \\ &\quad\quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}T_{1}(k, \mu ,\lambda ;s)+m \bigl\vert f''(b) \bigr\vert ^{q}T_{2}(k,\mu ,\lambda ;s) \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$
where we use the fact that
$$\begin{aligned}& T_{1}(k,\mu ,\lambda ;s)= \textstyle\begin{cases} \frac{\frac{2\mu }{k} [ (\frac{\mu }{k}+1 )\lambda ]^{1+\frac{k(s+2)}{\mu }}}{(s+2)(\frac{\mu }{k}+s+2)}-\frac{(\frac{\mu }{k}+1)\lambda }{s+2}+\frac{1}{\frac{\mu }{k}+s+2}, &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{(\frac{\mu }{k}+1)\lambda }{s+2}-\frac{1}{\frac{\mu }{k}+s+2}, &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \\& T_{2}(k,\mu ,\lambda ;s)= \textstyle\begin{cases} \left [ \textstyle\begin{array}{@{}c@{}} \beta (\frac{\mu }{k}+2,s+1 )- (\frac{\mu }{k}+1 )\lambda \beta (2,s+1 )\\ {}+2 (\frac{\mu }{k}+1 )\lambda \beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};2,s+1 )\\ {}-2\beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};\frac{\mu }{k}+2,s+1 ) \end{array}\displaystyle \right ] , &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ (\frac{\mu }{k}+1 )\lambda \beta (2,s+1)-\beta (\frac{\mu }{k}+2,s+1 ), &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \end{aligned}$$
and \(C_{0}(k,\mu ,\lambda )\) is defined by (2.5).
Corollary 2.2
In Theorem 2.1, if the mapping \(\eta (b,a,m)=b-ma\) along with \(m=1\), taking \(x=\frac{a+b}{2}\), then for \(s\in (0,1]\), we have the following inequality for s-convex functions:
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\lambda ,1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[ \frac{f(a)+f(b)}{2} \biggr] \\ &\quad \quad {} -\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}T_{1}(k,\mu ,\lambda ;s)+ \bigl\vert f''(a) \bigr\vert ^{q}T_{2}(k, \mu ,\lambda ;s) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}T_{1}(k,\mu , \lambda ;s)+ \bigl\vert f''(b) \bigr\vert ^{q}T_{2}(k,\mu ,\lambda ;s) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Remark 2.2
In Corollary 2.2,
(i)
taking \(\lambda =\frac{1}{2}\), we obtain
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\frac{1}{2},1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}} \biggl(k,\mu , \frac{1}{2} \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}T_{1} \biggl(k,\mu ,\frac{1}{2};s \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}T_{2} \biggl(k,\mu ,\frac{1}{2};s \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}T_{1} \biggl(k, \mu ,\frac{1}{2};s \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}T_{2} \biggl(k,\mu ,\frac{1}{2};s \biggr) \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(ii)
taking \(\lambda =\frac{1}{3}\), we obtain
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\frac{1}{3},1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr] \\ &\quad \quad {}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}} \biggl(k,\mu ,\frac{1}{3} \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}T_{1} \biggl(k,\mu ,\frac{1}{3};s \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}T_{2} \biggl(k,\mu ,\frac{1}{3};s \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}T_{1} \biggl(k, \mu ,\frac{1}{3};s \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}T_{2} \biggl(k,\mu ,\frac{1}{3};s \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=\mu =s=1\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{162} \biggl\{ \biggl[\frac{59}{96} \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+\frac{37}{96} \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[\frac{59}{96} \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \frac{37}{96} \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} \\ &\quad \leq \frac{(b-a)^{2}}{162} \biggl\{ \biggl(\frac{59\vert f''(a) \vert ^{q}+133\vert f''(b) \vert ^{q}}{192} \biggr)^{\frac{1}{q}} \\ &\quad \quad {} + \biggl(\frac{59\vert f''(b) \vert ^{q}+133\vert f''(a) \vert ^{q}}{192} \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.11)
It is noted that the result of the first inequality in (2.11) is proved by İşcan in [34], which is better than the result presented by Sarikaya et al. in [36, Theorem 6].
 
Remark 2.3
In Corollary 2.2, if we take \(k=1\) and \(\lambda =0,1\), we have the results (f) and (h) in [34, Corollary 2.3], respectively. Further, if we take \(\mu =1\), we have the results (g) and (i) in [34, Corollary 2.3], respectively.
II. If \(h(t)=t^{-s}\) in Theorem 2.1, then we have the following results.
Corollary 2.3
In Theorem 2.1, if \(\vert f'' \vert ^{q}\) for \(q\geq 1\) is generalized \((m,s)\)-Godunova–Levin–Dragomir-preinvex functions, then, for \(s\in (0,1)\) and \(m\in (0,1]\), we have
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \\ &\quad \quad {} \times \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}U_{1}(k, \mu ,\lambda ;s)+m \bigl\vert f''(a) \bigr\vert ^{q}U_{2}(k,\mu ,\lambda ;s) \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}U_{1}(k, \mu ,\lambda ;s)+m \bigl\vert f''(b) \bigr\vert ^{q}U_{2}(k,\mu ,\lambda ;s) \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$
where we use the fact that
$$\begin{aligned}& U_{1}(k,\mu ,\lambda ;s)= \textstyle\begin{cases} \frac{\frac{2\mu }{k} [ (\frac{\mu }{k}+1 )\lambda ]^{1+\frac{k(2-s)}{\mu }}}{(2-s)(\frac{\mu }{k}-s+2)}-\frac{(\frac{\mu }{k}+1)\lambda }{2-s}+\frac{1}{\frac{\mu }{k}-s+2}, &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{(\frac{\mu }{k}+1)\lambda }{2-s}-\frac{1}{\frac{\mu }{k}-s+2}, &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \\& U_{2}(k,\mu ,\lambda ;s)= \textstyle\begin{cases} \left [ \textstyle\begin{array}{@{}c@{}} \beta (\frac{\mu }{k}+2,1-s )- (\frac{\mu }{k}+1 )\lambda \beta (2,1-s )\\ {}+2 (\frac{\mu }{k}+1 )\lambda \beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};2,1-s ) \\ {}-2\beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};\frac{\mu }{k}+2,1-s ) \end{array}\displaystyle \right ] , &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ (\frac{\mu }{k}+1 )\lambda \beta (2,1-s)-\beta (\frac{\mu }{k}+2,1-s ), &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \end{aligned}$$
and \(C_{0}(k,\mu ,\lambda )\) is defined by (2.5).
Corollary 2.4
In Theorem 2.1, if the mapping \(\eta (b,a,m)=b-ma\) together with \(m=1\), taking \(x=\frac{a+b}{2}\), for \(s\in (0,1)\), we have the following inequality for s-Godunova–Levin functions:
$$\begin{aligned} & \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[\frac{f(a)+f(b)}{2} \biggr] \\ &\quad \quad {} -\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1}(k,\mu ,\lambda ;s)+ \bigl\vert f''(a) \bigr\vert ^{q}U_{2}(k, \mu ,\lambda ;s) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1}(k,\mu , \lambda ;s)+ \bigl\vert f''(b) \bigr\vert ^{q}U_{2}(k,\mu ,\lambda ;s) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Remark 2.4
In Corollary 2.4,
(a)
if \(\lambda =\frac{1}{3}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\frac{1}{3},1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}} \biggl(k,\mu , \frac{1}{3} \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(k,\mu ,\frac{1}{3};s \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}U_{2} \biggl(k,\mu ,\frac{1}{3};s \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(k, \mu ,\frac{1}{3};s \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}U_{2} \biggl(k,\mu ,\frac{1}{3};s \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a Simpson-type inequality:
$$\begin{aligned} & \biggl\vert I_{f} \biggl(1,1; \frac{a+b}{2},\frac{1}{3},1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{8}{81} \biggr)^{1-\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2}\biggr) \biggr\vert ^{q}U_{1} \biggl(1,1, \frac{1}{3};s \biggr) \\ &\quad \quad {}+ \bigl\vert f''(a) \bigr\vert ^{q}U_{2} \biggl(1,1,\frac{1}{3};s \biggr)\biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(1,1,\frac{1}{3};s \biggr) + \bigl\vert f''(b)\bigr\vert ^{q}U_{2} \biggl(1,1,\frac{1}{3};s \biggr) \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(b)
if \(\lambda =\frac{1}{2}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\frac{1}{2},1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}} \biggl(k,\mu , \frac{1}{2} \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(k,\mu ,\frac{1}{2};s \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}U_{2} \biggl(k,\mu ,\frac{1}{2};s \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(k, \mu ,\frac{1}{2};s \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}U_{2} \biggl(k,\mu ,\frac{1}{2};s \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain an averaged midpoint-trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert I_{f} \biggl(1,1; \frac{a+b}{2},\frac{1}{2},1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{1}{6} \biggr)^{1-\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(1,1, \frac{1}{2};s \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}U_{2} \biggl(1,1,\frac{1}{2};s \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}U_{1} \biggl(1,1,\frac{1}{2};s \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}U_{2} \biggl(1,1,\frac{1}{2};s \biggr) \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(c)
if \(\lambda =0\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},0,1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert f \biggl(\frac{a+b}{2} \biggr)-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} \biggl(\frac{1}{\frac{\mu }{k}+2} \biggr)^{1-\frac{1}{q}} \biggl\{ \biggl[\frac{\vert f''(\frac{a+b}{2}) \vert ^{q}}{\frac{\mu }{k}-s+2}+ \bigl\vert f''(a) \bigr\vert ^{q}\beta \biggl(\frac{\mu }{k}+2,1-s \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[\frac{\vert f''(\frac{a+b}{2}) \vert ^{q}}{\frac{\mu }{k}-s+2}+ \bigl\vert f''(b) \bigr\vert ^{q}\beta \biggl(\frac{\mu }{k}+2,1-s \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a midpoint-type inequality:
$$\begin{aligned} & \biggl\vert I_{f} \biggl(1,1; \frac{a+b}{2},0,1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert f \biggl(\frac{a+b}{2} \biggr)-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{1}{3} \biggr)^{1-\frac{1}{q}} \biggl\{ \biggl[\frac{\vert f''(\frac{a+b}{2}) \vert ^{q}}{3-s}+ \bigl\vert f''(a) \bigr\vert ^{q}\beta (3,1-s ) \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl[\frac{\vert f''(\frac{a+b}{2}) \vert ^{q}}{3-s}+ \bigl\vert f''(b) \bigr\vert ^{q}\beta (3,1-s ) \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(d)
if \(\lambda =1\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},1,1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{f(a)+f(b)}{2}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} \biggl[\frac{\frac{\mu }{k} (\frac{\mu }{k}+3 )}{2 (\frac{\mu }{k}+2 )} \biggr]^{1-\frac{1}{q}} \\ &\quad \quad {} \times \biggl\{ \biggl[\frac{\frac{\mu }{k} (\frac{\mu }{k}-s+3 )\vert f''(\frac{a+b}{2}) \vert ^{q}}{(2-s) (\frac{\mu }{k}-s+2 )} \\ &\quad \quad {} + \bigl\vert f''(a) \bigr\vert ^{q} \biggl( \biggl(\frac{\mu }{k}+1 \biggr)\beta (2,1-s)-\beta \biggl(\frac{\mu }{k}+2,1-s\biggr) \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[\frac{\frac{\mu }{k} (\frac{\mu }{k}-s+3 )\vert f''(\frac{a+b}{2}) \vert ^{q}}{(2-s) (\frac{\mu }{k}-s+2 )} \\ &\quad \quad {} + \bigl\vert f''(b) \bigr\vert ^{q} \biggl( \biggl(\frac{\mu }{k}+1 \biggr)\beta (2,1-s)-\beta \biggl(\frac{\mu }{k}+2,1-s \biggr) \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert I_{f} \biggl(1,1; \frac{a+b}{2},1,1,a,b \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{2}{3} \biggr)^{1-\frac{1}{q}} \biggl\{ \biggl[\frac{(4-s)\vert f''(\frac{a+b}{2}) \vert ^{q}}{(2-s)(3-s)} + \bigl\vert f''(a) \bigr\vert ^{q} \bigl(2\beta (2,1-s)-\beta (3,1-s) \bigr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[\frac{(4-s)\vert f''(\frac{a+b}{2}) \vert ^{q}}{(2-s)(3-s)} + \bigl\vert f''(b) \bigr\vert ^{q} \bigl(2\beta (2,1-s)-\beta (3,1-s) \bigr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
 
III. If \(h(t)=t(1-t)\) in Theorem 2.1, then we have the following results.
Corollary 2.5
In Theorem 2.1, if \(\vert f'' \vert ^{q}\) for \(q\geq 1\) is generalized \((m, tgs)\)-preinvex functions, then, for \(m\in (0,1]\), we have
$$ \begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda )\theta ^{\frac{1}{q}}(k, \mu ,\lambda ) \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(a) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(b) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned} $$
where we use the fact that
$$ \theta (k,\mu ,\lambda )= \textstyle\begin{cases} \frac{\frac{2\mu }{k} [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{3k}{\mu }+1}}{3(\frac{\mu }{k}+3)}-\frac{\frac{\mu }{k} [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{4k}{\mu }+1}}{2(\frac{\mu }{k}+4)}-\frac{(\frac{\mu }{k}+1)\lambda }{12}+\frac{1}{(\frac{\mu }{k}+3)(\frac{\mu }{k}+4)}, &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{(\frac{\mu }{k}+1)\lambda }{12}-\frac{1}{(\frac{\mu }{k}+3)(\frac{\mu }{k}+4)}, &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1\end{cases} $$
and \(C_{0}(k,\mu ,\lambda )\) is defined by (2.5).
Corollary 2.6
In Theorem 2.1, if the mapping \(\eta (b,a,m)=b-ma\) along with \(m=1\), taking \(x=\frac{a+b}{2}\), we get the following inequality for \(tgs\)-convex functions:
$$ \begin{aligned} & \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[\frac{f(a)+f(b)}{2} \biggr] \\ &\quad {} -\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda )\theta ^{\frac{1}{q}}(k,\mu ,\lambda ) \\ &\quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Remark 2.5
In Corollary 2.6,
(a)
if \(\lambda =\frac{1}{3}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )}C_{0}^{1-\frac{1}{q}} \biggl(k,\mu , \frac{1}{3} \biggr)\theta ^{\frac{1}{q}} \biggl(k,\mu ,\frac{1}{3} \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a Simpson-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{162}{ \biggl(\frac{23}{160} \biggr)}^{\frac{1}{q}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(b)
if \(\lambda =\frac{1}{2}\), then we obtain
$$ \begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )}C_{0}^{1-\frac{1}{q}} \biggl(k,\mu , \frac{1}{2} \biggr)\theta ^{\frac{1}{q}} \biggl(k,\mu ,\frac{1}{2} \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Specially, if we put \(k=1=\mu \), then we derive an averaged midpoint-trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{96}{ \biggl(\frac{1}{5} \biggr)}^{\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(c)
if \(\lambda =0\), then we obtain
$$ \begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} \biggl(\frac{1}{\frac{\mu }{k}+2} \biggr)^{1-\frac{1}{q}} \biggl[\frac{1}{(\frac{\mu }{k}+3)(\frac{\mu }{k}+4)} \biggr]^{\frac{1}{q}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Specially, if we put \(k=1=\mu \), then we derive a midpoint-type inequality:
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{48} \biggl(\frac{3}{20} \biggr)^{\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(d)
if \(\lambda =1\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} \biggl[\frac{\frac{\mu }{k} (\frac{\mu }{k}+3 )}{2 (\frac{\mu }{k}+2 )} \biggr]^{1-\frac{1}{q}} \biggl[\frac{\frac{\mu }{k} (\frac{\mu ^{2}}{k^{2}}+\frac{8\mu }{k}+19 )}{12 (\frac{\mu }{k}+3 ) (\frac{\mu }{k}+4 )} \biggr]^{\frac{1}{q}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{24} \biggl(\frac{7}{40} \biggr)^{\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
 
IV. If \(h(t)=\frac{\sqrt{t}}{2\sqrt{1-t}}\) in Theorem 2.1, then we have the following results.
Corollary 2.7
In Theorem 2.1, if \(\vert f'' \vert ^{q}\) for \(q\geq 1\) is generalized m-MT-preinvex functions, then, for \(m\in (0,1]\), we have
$$ \begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}\Phi _{1}(k,\mu ,\lambda )+m \bigl\vert f''(a) \bigr\vert ^{q}\Phi _{2}(k,\mu ,\lambda ) \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}\Phi _{1}(k,\mu ,\lambda )+m \bigl\vert f''(b) \bigr\vert ^{q}\Phi _{2}(k,\mu ,\lambda ) \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned} $$
where we use the fact that
$$\begin{aligned}& \Phi _{1}(k,\mu ,\lambda ) \\& \quad = \textstyle\begin{cases} \left [ \textstyle\begin{array}{@{}c@{}} \frac{1}{2}\beta (\frac{\mu }{k}+\frac{5}{2},\frac{1}{2} )-\frac{3\lambda \pi (\frac{\mu }{k}+1)}{16}+ (\frac{\mu }{k}+1 )\lambda \beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};\frac{5}{2},\frac{1}{2} )\\ {}-\beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};\frac{\mu }{k}+\frac{5}{2},\frac{1}{2} )\end{array}\displaystyle \right ] , &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{3\lambda \pi (\frac{\mu }{k}+1)}{16}-\frac{1}{2}\beta (\frac{\mu }{k}+\frac{5}{2},\frac{1}{2} ), &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \\& \Phi _{2}(k,\mu ,\lambda ) \\& \quad = \textstyle\begin{cases} \left [ \textstyle\begin{array}{@{}c@{}} \frac{1}{2}\beta (\frac{\mu }{k}+\frac{3}{2},\frac{3}{2} )-\frac{\lambda \pi (\frac{\mu }{k}+1)}{16} + (\frac{\mu }{k}+1 )\lambda \beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};\frac{3}{2},\frac{3}{2} )\\ {}-\beta ( [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k}{\mu }};\frac{\mu }{k}+\frac{3}{2},\frac{3}{2} ) \end{array}\displaystyle \right ] , &0\leq \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{\lambda \pi (\frac{\mu }{k}+1)}{16}-\frac{1}{2}\beta (\frac{\mu }{k}+\frac{3}{2},\frac{3}{2} ), &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1, \end{cases}\displaystyle \end{aligned}$$
and \(C_{0}(k,\mu ,\lambda )\) is defined by (2.5).
Corollary 2.8
In Theorem 2.1, if the mapping \(\eta (b,a,m)=b-ma\) together with \(m=1\), taking \(x=\frac{a+b}{2}\), we get the following inequality for MT-convex functions:
$$\begin{aligned} & \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[\frac{f(a)+f(b)}{2} \biggr] \\ &\quad \quad {} -\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}}(k,\mu ,\lambda ) \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1}(k,\mu ,\lambda )+ \bigl\vert f''(a) \bigr\vert ^{q}\Phi _{2}(k,\mu ,\lambda ) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1}(k,\mu ,\lambda )+ \bigl\vert f''(b) \bigr\vert ^{q}\Phi _{2}(k,\mu ,\lambda ) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Remark 2.6
In Corollary 2.8,
(a)
if \(\lambda =\frac{1}{3}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )}C_{0}^{1-\frac{1}{q}} \biggl(k,\mu ,\frac{1}{3} \biggr) \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1} \biggl(k,\mu ,\frac{1}{3} \biggr) \\ &\quad \quad {}+ \bigl\vert f''(a) \bigr\vert ^{q}\Phi _{2} \biggl(k,\mu ,\frac{1}{3} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1} \biggl(k,\mu ,\frac{1}{3} \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}\Phi _{2} \biggl(k,\mu ,\frac{1}{3} \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a Simpson-type inequality:
$$ \begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} { \biggl(\frac{8}{81} \biggr)}^{1-\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1} \biggl(1,1,\frac{1}{3} \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}\Phi _{2} \biggl(1,1,\frac{1}{3} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1} \biggl(1,1,\frac{1}{3} \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}\Phi _{2} \biggl(1,1,\frac{1}{3} \biggr) \biggr]^{\frac{1}{q}} \biggr\} , \end{aligned} $$
where
$$ \Phi _{1} \biggl(1,1,\frac{1}{3} \biggr)=\frac{71\sqrt{2}}{648}+\frac{1}{8}\arcsin {\frac{\sqrt{3}}{3}}- \frac{\pi }{32} $$
and
$$ \Phi _{2} \biggl(1,1,\frac{1}{3} \biggr)=\frac{19\sqrt{2}}{648}+\frac{1}{12}\arcsin {\frac{1}{3}}+ \frac{1}{16}\arctan {2\sqrt{2}}-\frac{\pi }{32}; $$
 
(b)
if \(\lambda =\frac{1}{2}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} C_{0}^{1-\frac{1}{q}} \biggl(k,\mu , \frac{1}{2} \biggr) \biggl\{ \biggl[ \biggl\vert f''\biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1} \biggl(k,\mu ,\frac{1}{2} \biggr) \\ &\quad \quad {}+ \bigl\vert f''(a) \bigr\vert ^{q}\Phi _{2} \biggl(k,\mu ,\frac{1}{2} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}\Phi _{1} \biggl(k,\mu ,\frac{1}{2} \biggr)+ \bigl\vert f''(b)\bigr\vert ^{q}\Phi _{2} \biggl(k,\mu ,\frac{1}{2} \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive an averaged midpoint-trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{96} \biggl(\frac{3\pi }{16} \biggr)^{\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(c)
if \(\lambda =0\), then we obtain
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} \biggl(\frac{1}{\frac{\mu }{k}+2} \biggr)^{1-\frac{1}{q}} \biggl(\frac{1}{2} \biggr)^{\frac{1}{q}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}\beta \biggl( \frac{\mu }{k}+\frac{5}{2},\frac{1}{2} \biggr)+ \bigl\vert f''(a) \bigr\vert ^{q}\beta \biggl( \frac{\mu }{k}+\frac{3}{2},\frac{3}{2} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}\beta \biggl( \frac{\mu }{k}+\frac{5}{2},\frac{1}{2} \biggr)+ \bigl\vert f''(b) \bigr\vert ^{q}\beta \biggl( \frac{\mu }{k}+\frac{3}{2},\frac{3}{2} \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a midpoint-type inequality:
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{48} \biggl(\frac{3}{2} \biggr)^{\frac{1}{q}} \\ &\quad\quad {} \times \biggl\{ \biggl[\frac{5\pi }{16} \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+\frac{\pi }{16} \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl[\frac{5\pi }{16} \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+\frac{\pi }{16} \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(d)
if \(\lambda =1\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )} \biggl(\frac{\frac{\mu }{k}(\frac{\mu }{k}+3)}{2(\frac{\mu }{k}+2)} \biggr)^{1-\frac{1}{q}} \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q} \biggl(\frac{3(\frac{\mu }{k}+1)\pi }{16}-\frac{1}{2} \beta \biggl(\frac{\mu }{k}+\frac{5}{2},\frac{1}{2} \biggr) \biggr) \\ &\quad \quad {} + \bigl\vert f''(a) \bigr\vert ^{q} \biggl(\frac{(\frac{\mu }{k}+1)\pi }{16}-\frac{1}{2}\beta \biggl( \frac{\mu }{k}+\frac{3}{2},\frac{3}{2} \biggr) \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q} \biggl( \frac{3(\frac{\mu }{k}+1)\pi }{16}-\frac{1}{2}\beta \biggl(\frac{\mu }{k}+ \frac{5}{2},\frac{1}{2} \biggr) \biggr) \\ &\quad \quad {} + \bigl\vert f''(b) \bigr\vert ^{q} \biggl(\frac{(\frac{\mu }{k}+1)\pi }{16}-\frac{1}{2}\beta \biggl( \frac{\mu }{k}+\frac{3}{2},\frac{3}{2} \biggr) \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we obtain a trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{2}{3} \biggr)^{1-\frac{1}{q}} \\ &\quad \quad {} \times \biggl\{ \biggl[\frac{7\pi }{32} \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+\frac{3\pi }{32} \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\qquad {} + \biggl[\frac{7\pi }{32} \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+\frac{3\pi }{32} \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
 
Now, we get ready to state the second theorem as follows.
Theorem 2.2
Let \(A\subseteq \mathbb{R}\) be an open m-invex subset with respect to \(\eta : A\times A\times (0,1] \rightarrow \mathbb{R}\setminus \{0\}\) for some fixed \(m \in (0,1]\), and let \(a, b \in A\), \(a< b\) with \(\eta (b,a,m)>0\). Assume that \(f:A\rightarrow \mathbb{R}\) is a twice differentiable function on A such that \(f''\) is integrable on \([ma,ma+\eta (b,a,m) ]\). If \(\vert f'' \vert ^{q}\) for \(q>1\) is a generalized \((m,h)\)-preinvex function with respect to η and \(h:[0,1]\rightarrow \mathbb{R}_{0}\), then the following inequality for k-fractional integrals with \(x \in [a,b]\), \(\lambda \in [0, 1]\), \(\mu > 0\), \(k>0\) exists:
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p) \\ &\quad \quad {} \times \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl[ \bigl\vert f''(x) \bigr\vert ^{q} \int ^{1}_{0}h(t)\,\mathrm{d}t+m \bigl\vert f''(a) \bigr\vert ^{q} \int ^{1}_{0}h(1-t)\,\mathrm{d}t \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \\ &\quad \quad {}\times \biggl[ \bigl\vert f''(x) \bigr\vert ^{q} \int ^{1}_{0}h(t)\,\mathrm{d}t+m \bigl\vert f''(b) \bigr\vert ^{q} \int ^{1}_{0}h(1-t)\,\mathrm{d}t \biggr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(2.12)
where \(p=\frac{q}{q-1}\) and
$$\begin{aligned} &C_{3}(k,\mu ,\lambda ,p) \\ &\quad = \textstyle\begin{cases} \frac{1}{p(\frac{\mu }{k}+1)+1},& \lambda =0, \\ \left [ \textstyle\begin{array}{@{}c@{}} \frac{k [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k+kp(\frac{\mu }{k}+1)}{\mu }}}{\mu }\beta (\frac{k(1+p)}{\mu },1+p )\\ {}+\frac{k [1- (\frac{\mu }{k}+1 )\lambda ]^{p+1}}{\mu (p+1)}{}_{2}F_{1} (1-\frac{k(1+p)}{\mu },1;p+2;1- (\frac{\mu }{k}+1 )\lambda ) \end{array}\displaystyle \right ] ,&0< \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{k [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k+kp(\frac{\mu }{k}+1)}{\mu }}}{\mu }\beta (\frac{1}{(\frac{\mu }{k}+1)\lambda };\frac{k(1+p)}{\mu },1+p ), & \frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1. \end{cases}\displaystyle \end{aligned}$$
Proof
Using Lemma 2.1 and Hölder’s inequality, we have
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert \,\mathrm{d}t \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \int ^{1}_{0}t \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert \,\mathrm{d}t \\ &\quad \leq \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl[ \int ^{1}_{0}t^{p} \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert ^{p}\,\mathrm{d}t \biggr]^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl[ \int ^{1}_{0} \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl[ \int ^{1}_{0}t^{p} \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert ^{p}\,\mathrm{d}t \biggr]^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl[ \int ^{1}_{0} \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t \biggr]^{\frac{1}{q}}. \end{aligned}$$
(2.13)
Since \(\vert f'' \vert ^{q}\) is generalized \((m,h)\)-preinvex on \([ma,ma+\eta (b,a,m)]\), we get
$$\begin{aligned} \int ^{1}_{0} \bigl\vert f'' \bigl(ma+t\eta (x,a,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t &\leq \int ^{1}_{0} \bigl[h(t) \bigl\vert f''(x) \bigr\vert ^{q}+mh(1-t) \bigl\vert f''(a) \bigr\vert ^{q} \bigr]\,\mathrm{d}t \\ &= \bigl\vert f''(x) \bigr\vert ^{q} \int ^{1}_{0}h(t)\,\mathrm{d}t+m \bigl\vert f''(a) \bigr\vert ^{q} \int ^{1}_{0}h(1-t)\,\mathrm{d}t, \end{aligned}$$
(2.14)
$$\begin{aligned} \int ^{1}_{0} \bigl\vert f'' \bigl(mb+t\eta (x,b,m) \bigr) \bigr\vert ^{q}\,\mathrm{d}t &\leq \int ^{1}_{0} \bigl[h(t) \bigl\vert f''(x) \bigr\vert ^{q}+mh(1-t) \bigl\vert f''(b) \bigr\vert ^{q} \bigr]\,\mathrm{d}t \\ &= \bigl\vert f''(x) \bigr\vert ^{q} \int ^{1}_{0}h(t)\,\mathrm{d}t+m \bigl\vert f''(b) \bigr\vert ^{q} \int ^{1}_{0}h(1-t)\,\mathrm{d}t, \end{aligned}$$
(2.15)
and
$$\begin{aligned}& C_{3}(k,\mu ,\lambda ,p) \\& \quad = \int ^{1}_{0}t^{p} \biggl\vert \biggl( \frac{\mu }{k}+1 \biggr)\lambda -t^{\frac{\mu }{k}} \biggr\vert ^{p}\,\mathrm{d}t \\& \quad =\textstyle\begin{cases} \int ^{1}_{0}t^{(\frac{\mu }{k}+1)p}\,\mathrm{d}t,& \lambda =0,\\ \left [ \textstyle\begin{array}{cc} \int ^{[(\frac{\mu }{k}+1)\lambda ]^{\frac{k}{\mu }}}_{0}t^{p}[(\frac{\mu }{k}+1)\lambda -t^{\frac{\mu }{k}}]^{p}\,\mathrm{d}t \\ +\int ^{1}_{[(\frac{\mu }{k}+1)\lambda ]^{\frac{k}{\mu }}}t^{p}[t^{\frac{\mu }{k}}-(\frac{\mu }{k}+1)\lambda ]^{p}\,\mathrm{d}t \end{array}\displaystyle \right ] , &0< \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \int ^{1}_{0}t^{p}[(\frac{\mu }{k}+1)\lambda -t^{\frac{\mu }{k}}]^{p}\,\mathrm{d}t, &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1 \end{cases}\displaystyle \\& \quad = \textstyle\begin{cases} \frac{1}{p(\frac{\mu }{k}+1)+1},& \lambda =0, \\ \left [ \textstyle\begin{array}{@{}c@{}} \frac{k [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k+kp(\frac{\mu }{k}+1)}{\mu }}}{\mu }\beta (\frac{k(1+p)}{\mu },1+p )\\ {}+\frac{k [1- (\frac{\mu }{k}+1 )\lambda ]^{p+1}}{\mu (p+1)}{}_{2}F_{1} (1-\frac{k(1+p)}{\mu },1;p+2;1- (\frac{\mu }{k}+1 )\lambda ) \end{array}\displaystyle \right ] ,&0< \lambda \leq \frac{1}{\frac{\mu }{k}+1}, \\ \frac{k [ (\frac{\mu }{k}+1 )\lambda ]^{\frac{k+kp(\frac{\mu }{k}+1)}{\mu }}}{\mu }\beta (\frac{1}{(\frac{\mu }{k}+1)\lambda };\frac{k(1+p)}{\mu },1+p ), &\frac{1}{\frac{\mu }{k}+1}< \lambda \leq 1. \end{cases}\displaystyle \end{aligned}$$
(2.16)
Hence, if we use (2.14)–(2.16) in (2.13), we can get the desired result. This completes the proof. □
Let us point out some special cases of Theorem 2.2.
I. If \(h(t)=t^{s}\) in Theorem 2.2, then we have the following results.
Corollary 2.9
In Theorem 2.2, if we use the generalized \((m,s)\)-Breckner-preinvexity of \(\vert f'' \vert ^{q}\) along with \(q>1\) and \(p=\frac{q}{q-1}\), then, for \(s\in (0,1]\) and \(m\in (0,1]\), we have the following inequality:
$$ \begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p) \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl[\frac{\vert f''(x) \vert ^{q}+m\vert f''(a) \vert ^{q}}{s+1} \biggr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \biggl[ \frac{\vert f''(x) \vert ^{q}+m\vert f''(b) \vert ^{q}}{s+1} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Corollary 2.10
In Theorem 2.2, if the mapping \(\eta (b,a,m)=b-ma\) together with \(m=1\), choosing \(x=\frac{a+b}{2}\), for \(s\in (0,1]\), we have the following inequality for s-convex functions:
$$ \begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\lambda ,1,a,b \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )}C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p) \biggl\{ \biggl[\frac{\vert f''(x) \vert ^{q}+\vert f''(a) \vert ^{q}}{s+1} \biggr]^{\frac{1}{q}} + \biggl[ \frac{\vert f''(x) \vert ^{q}+\vert f''(b) \vert ^{q}}{s+1} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Remark 2.7
In Corollary 2.10,
(i)
if \(\lambda =\frac{1}{2}\), then we obtain
$$ \begin{aligned} & \biggl\vert \frac{2^{\frac{\mu }{k}-1}}{(b-a)^{\frac{\mu }{k}-1}}I_{f} \biggl(\mu ,k;\frac{a+b}{2},\frac{1}{2},1,a,b \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8 (\frac{\mu }{k}+1 )}C_{3}^{\frac{1}{p}} \biggl(k,\mu , \frac{1}{2},p \biggr) \biggl\{ \biggl[\frac{\vert f''(x) \vert ^{q}+\vert f''(a) \vert ^{q}}{s+1} \biggr]^{\frac{1}{q}} + \biggl[\frac{\vert f''(x) \vert ^{q}+\vert f''(b) \vert ^{q}}{s+1} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned} $$
 
(ii)
if \(k=1\) and \(\lambda =\frac{1}{3},1\), then we have the results (c) and (f) of Corollary 2.3 in [34], respectively. Further, if we choose \(\mu =1\), then we have the results (d) and (g) of Corollary 2.3 in [34], respectively.
 
II. If \(h(t)=t^{-s}\) in Theorem 2.2, then we have the following results.
Corollary 2.11
In Theorem 2.2, if we use the generalized \((m,s)\)-Godunova–Levin–Dragomir-preinvexity of \(\vert f'' \vert ^{q}\) along with \(q>1\) and \(p=\frac{q}{q-1}\), then, for \(s\in (0,1)\) and \(m\in (0,1]\), we have the following inequality:
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p)\frac{1}{{(1-s)}^{\frac{1}{q}}} \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(a) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(b) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 2.12
In Theorem 2.2, if the mapping \(\eta (b,a,m)=b-ma\) along with \(m=1\), choosing \(x=\frac{a+b}{2}\), for \(s\in (0,1)\), we have the following inequality for s-Godunova–Levin functions:
$$\begin{aligned} & \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[\frac{f(a)+f(b)}{2} \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)(1-s)^{\frac{1}{q}}}C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Remark 2.8
In Corollary 2.12,
(a)
if \(\lambda =\frac{1}{3}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)(1-s)^{\frac{1}{q}}}C_{3}^{\frac{1}{p}} \biggl(k,\mu , \frac{1}{3},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a Simpson-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16(1-s)^{\frac{1}{q}}}C_{3}^{\frac{1}{p}} \biggl(1,1, \frac{1}{3},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(b)
if \(\lambda =\frac{1}{2}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)(1-s)^{\frac{1}{q}}}C_{3}^{\frac{1}{p}} \biggl(k,\mu , \frac{1}{2},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive an averaged midpoint-trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16(1-s)^{\frac{1}{q}}}{\beta ^{\frac{1}{p}}(1+p,1+p)} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(c)
if \(\lambda =0\), then we obtain
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)(1-s)^{\frac{1}{q}}}{ \biggl[\frac{1}{p (\frac{\mu }{k}+1 )+1} \biggr]}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a midpoint-type inequality:
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16(1-s)^{\frac{1}{q}}}{ \biggl(\frac{1}{2p+1} \biggr)}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(d)
if \(\lambda =1\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)(1-s)^{\frac{1}{q}}}C_{3}^{\frac{1}{p}}(k,\mu ,1,p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16(1-s)^{\frac{1}{q}}}{ \biggl[2^{1+2p}\beta \biggl(\frac{1}{2};1+p,1+p \biggr) \biggr]}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
 
III. If \(h(t)=t(1-t)\) in Theorem 2.2, then we have the following results.
Corollary 2.13
In Theorem 2.2, if we use the generalized \((m,tgs)\)-preinvexity of \(\vert f'' \vert ^{q}\) along with \(q>1\) and \(p=\frac{q}{q-1}\), then, for \(m\in (0,1]\), we have the following inequality:
$$\begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p){ \biggl( \frac{1}{6} \biggr)}^{\frac{1}{q}} \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(a) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(b) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$
where \(C_{3}(k,\mu ,\lambda ,p)\) is defined by (2.16).
Corollary 2.14
In Theorem 2.2, if the mapping \(\eta (b,a,m)=b-ma\) together with \(m=1\), choosing \(x=\frac{a+b}{2}\), we get the following inequality for \(tgs\)-convex functions:
$$\begin{aligned} & \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[\frac{f(a)+f(b)}{2} \biggr] -\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}}(k, \mu ,\lambda ,p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Remark 2.9
In Corollary 2.14,
(a)
if \(\lambda =\frac{1}{3}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}} \biggl(k,\mu ,\frac{1}{3},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a Simpson-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}} \biggl(1,1, \frac{1}{3},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(b)
if \(\lambda =\frac{1}{2}\), then we obtain
$$ \begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}} \biggl(k,\mu ,\frac{1}{2},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Specially, if we put \(k=1=\mu \), then we derive an averaged midpoint-trapezoid-type inequality:
$$ \begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}\beta ^{\frac{1}{p}}(1+p,1+p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned} $$
 
(c)
if \(\lambda =0\), then we obtain
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}{ \biggl[\frac{1}{p (\frac{\mu }{k}+1 )+1} \biggr]}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a midpoint-type inequality:
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}{ \biggl(\frac{1}{2p+1} \biggr)}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(d)
if \(\lambda =1\), then we obtain
$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}}(k, \mu ,1,p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Specially, if we put \(k=1=\mu \), then we derive a trapezoid-type inequality:
$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{1}{6} \biggr)^{\frac{1}{q}}{ \biggl[2^{1+2p}\beta \biggl(\frac{1}{2};1+p,1+p \biggr) \biggr]}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
 
IV. If \(h(t)=\frac{\sqrt{t}}{2\sqrt{1-t}}\) in Theorem 2.2, then we have the following results.
Corollary 2.15
In Theorem 2.2, if we use the generalized m-MT-preinvexity of \(\vert f'' \vert ^{q}\) along with \(q>1\) and \(p=\frac{q}{q-1}\), then, for \(m\in (0,1]\), we have the following inequality:
$$ \begin{aligned} & \bigl\vert I_{f,\eta }(\mu ,k;x,\lambda ,m,a,b) \bigr\vert \\ &\quad \leq C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p) \biggl( \frac{\pi }{4} \biggr)^{\frac{1}{q}} \biggl\{ \biggl\vert \frac{\eta ^{\frac{\mu }{k}+2}(x,a,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(a) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \\ &\quad \quad {} + \biggl\vert \frac{(-1)^{\frac{\mu }{k}+2}\eta ^{\frac{\mu }{k}+2}(x,b,m)}{(\frac{\mu }{k}+1)\eta (b,a,m)} \biggr\vert \bigl[ \bigl\vert f''(x) \bigr\vert ^{q}+m \bigl\vert f''(b) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \biggr\} , \end{aligned} $$
where we use the fact that
$$ \begin{aligned} \int ^{1}_{0}\frac{\sqrt{t}}{2\sqrt{1-t}}\,\mathrm{d}t= \int ^{1}_{0}\frac{\sqrt{1-t}}{2\sqrt{t}}\,\mathrm{d}t= \frac{\pi }{4}. \end{aligned} $$
Corollary 2.16
In Theorem 2.2, if the mapping \(\eta (b,a,m)=b-ma\) together with \(m=1\), choosing \(x=\frac{a+b}{2}\), we get the following inequality for MT-convex functions:
$$\begin{aligned} & \biggl\vert (1-\lambda )f \biggl(\frac{a+b}{2} \biggr)+\lambda \biggl[\frac{f(a)+f(b)}{2} \biggr] \\ &\quad \quad {} -\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}} f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}}(k,\mu ,\lambda ,p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Remark 2.10
In Corollary 2.16,
(a)
if \(\lambda =\frac{1}{3}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr] \\ &\quad \quad {}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}} \biggl(k,\mu ,\frac{1}{3},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a Simpson-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[f(a)+4f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}} \biggl(1,1,\frac{1}{3},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl( \frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}}\biggr\} ; \end{aligned}$$
 
(b)
if \(\lambda =\frac{1}{2}\), then we obtain
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr] \\ &\quad \quad {}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}} \biggl(k,\mu ,\frac{1}{2},p \biggr) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive an averaged midpoint-trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{4} \biggl[f(a)+2f \biggl(\frac{a+b}{2} \biggr)+f(b) \biggr]-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}\beta ^{\frac{1}{p}}(1+p,1+p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned}$$
 
(c)
if \(\lambda =0\), then we obtain
$$\begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}{ \biggl[\frac{1}{p (\frac{\mu }{k}+1 )+1} \biggr]}^{\frac{1}{p}} \\ &\quad\quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Specially, if we put \(k=1=\mu \), then we derive a midpoint-type inequality:
$$ \begin{aligned} & \biggl\vert f \biggl(\frac{a+b}{2} \biggr)- \frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}{ \biggl(\frac{1}{2p+1} \biggr)}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} ; \end{aligned} $$
 
(d)
if \(\lambda =1\), then we obtain
$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{2^{\frac{\mu }{k}-1}\Gamma _{k}(\mu +k)}{(b-a)^{\frac{\mu }{k}}} \bigl[{}_{k}J^{\mu }_{(\frac{a+b}{2})^{-}}f(a)+{}_{k}J^{\mu }_{(\frac{a+b}{2})^{+}}f(b) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{8(\frac{\mu }{k}+1)} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}C_{3}^{\frac{1}{p}}(k, \mu ,1,p) \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned} $$
Specially, if we put \(k=1=\mu \), then we derive a trapezoid-type inequality:
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int ^{b}_{a} f(x)\,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{16} \biggl(\frac{\pi }{4} \biggr)^{\frac{1}{q}}{ \biggl[2^{1+2p}\beta \biggl(\frac{1}{2};1+p,1+p \biggr) \biggr]}^{\frac{1}{p}} \\ &\quad \quad {} \times \biggl\{ \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(a) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} + \biggl[ \biggl\vert f'' \biggl(\frac{a+b}{2} \biggr) \biggr\vert ^{q}+ \bigl\vert f''(b) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant No. 61374028.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s, m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017) MathSciNet Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s, m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017) MathSciNet
2.
go back to reference Hussain, S., Qaisar, S.: More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 5, Article ID 77 (2016) CrossRef Hussain, S., Qaisar, S.: More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 5, Article ID 77 (2016) CrossRef
3.
go back to reference Hwang, D.Y., Dragomir, S.S.: Extensions of the Hermite–Hadamard inequality for r-preinvex functions on an invex set. Bull. Aust. Math. Soc. 95(3), 412–423 (2017) MathSciNetCrossRefMATH Hwang, D.Y., Dragomir, S.S.: Extensions of the Hermite–Hadamard inequality for r-preinvex functions on an invex set. Bull. Aust. Math. Soc. 95(3), 412–423 (2017) MathSciNetCrossRefMATH
5.
go back to reference Latif, M.A.: On some new inequalities of Hermite–Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value. Ukr. Math. J. 67(10), 1552–1571 (2016) MathSciNetCrossRefMATH Latif, M.A.: On some new inequalities of Hermite–Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value. Ukr. Math. J. 67(10), 1552–1571 (2016) MathSciNetCrossRefMATH
6.
go back to reference Latif, M.A., Dragomir, S.S.: Generalization of Hermite–Hadamard type inequalities for n-times differentiable functions through preinvexity. Georgian Math. J. 23(1), 97–104 (2016) MathSciNetCrossRefMATH Latif, M.A., Dragomir, S.S.: Generalization of Hermite–Hadamard type inequalities for n-times differentiable functions through preinvexity. Georgian Math. J. 23(1), 97–104 (2016) MathSciNetCrossRefMATH
7.
8.
go back to reference Wu, S.H., Baloch, I.A., İşcan, İ.: On harmonically \((p,h,m)\)-preinvex functions. J. Funct. Spaces 2017, Article ID 2148529 (2017) MathSciNetMATH Wu, S.H., Baloch, I.A., İşcan, İ.: On harmonically \((p,h,m)\)-preinvex functions. J. Funct. Spaces 2017, Article ID 2148529 (2017) MathSciNetMATH
9.
go back to reference Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013) CrossRefMATH Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013) CrossRefMATH
10.
go back to reference Dragomir, S.S., Bhatti, M.I., Iqbal, M., Muddassar, M.: Some new Hermite–Hadamard’s type fractional integral inequalities. J. Comput. Anal. Appl. 18(4), 655–661 (2015) MathSciNetMATH Dragomir, S.S., Bhatti, M.I., Iqbal, M., Muddassar, M.: Some new Hermite–Hadamard’s type fractional integral inequalities. J. Comput. Anal. Appl. 18(4), 655–661 (2015) MathSciNetMATH
11.
go back to reference Hwang, S.R., Tseng, K.L., Hsu, K.C.: New inequalities for fractional integrals and their applications. Turk. J. Math. 40, 471–486 (2016) MathSciNetCrossRef Hwang, S.R., Tseng, K.L., Hsu, K.C.: New inequalities for fractional integrals and their applications. Turk. J. Math. 40, 471–486 (2016) MathSciNetCrossRef
12.
go back to reference Iqbal, M., Bhatti, M.I., Nazeer, K.: Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 52(3), 707–716 (2015) MathSciNetCrossRefMATH Iqbal, M., Bhatti, M.I., Nazeer, K.: Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 52(3), 707–716 (2015) MathSciNetCrossRefMATH
13.
go back to reference Set, E., İşcan, İ., Kara, H.H.: Hermite–Hadamard–Fejer type inequalities for s-convex function in the second sense via fractional integrals. Filomat 30(12), 3131–3138 (2016) MathSciNetCrossRefMATH Set, E., İşcan, İ., Kara, H.H.: Hermite–Hadamard–Fejer type inequalities for s-convex function in the second sense via fractional integrals. Filomat 30(12), 3131–3138 (2016) MathSciNetCrossRefMATH
14.
go back to reference Anastassiou, G.A.: Generalised fractional Hermite–Hadamard inequalities involving m-convexity and \((s,m)\)-convexity. Facta Univ., Ser. Math. Inform. 28(2), 107–126 (2013) MathSciNetMATH Anastassiou, G.A.: Generalised fractional Hermite–Hadamard inequalities involving m-convexity and \((s,m)\)-convexity. Facta Univ., Ser. Math. Inform. 28(2), 107–126 (2013) MathSciNetMATH
15.
go back to reference Awan, M.U., Noor, M.A., Mihai, M.V., Noor, K.I.: Fractional Hermite–Hadamard inequalities for differentiable s-Godunova–Levin functions. Filomat 30(12), 3235–3241 (2016) MathSciNetCrossRefMATH Awan, M.U., Noor, M.A., Mihai, M.V., Noor, K.I.: Fractional Hermite–Hadamard inequalities for differentiable s-Godunova–Levin functions. Filomat 30(12), 3235–3241 (2016) MathSciNetCrossRefMATH
16.
go back to reference İşcan, İ., Wu, S.H.: Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 238, 237–244 (2014) MathSciNetMATH İşcan, İ., Wu, S.H.: Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 238, 237–244 (2014) MathSciNetMATH
17.
go back to reference Qaisar, S., Iqbal, M., Muddassar, M.: New Hermite–Hadamard’s inequalities for preinvex functions via fractional integrals. J. Comput. Anal. Appl. 20(7), 1318–1328 (2016) MathSciNetMATH Qaisar, S., Iqbal, M., Muddassar, M.: New Hermite–Hadamard’s inequalities for preinvex functions via fractional integrals. J. Comput. Anal. Appl. 20(7), 1318–1328 (2016) MathSciNetMATH
18.
go back to reference Kashuri, A., Liko, R.: Generalizations of Hermite–Hadamard and Ostrowski type inequalities for MT m -preinvex functions. Proyecciones 36(1), 45–80 (2017) MathSciNetCrossRefMATH Kashuri, A., Liko, R.: Generalizations of Hermite–Hadamard and Ostrowski type inequalities for MT m -preinvex functions. Proyecciones 36(1), 45–80 (2017) MathSciNetCrossRefMATH
19.
go back to reference Matłoka, M.: Some inequalities of Hadamard type for mappings whose second derivatives are h-convex via fractional. J. Fract. Calc. Appl. 6(1), 110–119 (2015) MathSciNet Matłoka, M.: Some inequalities of Hadamard type for mappings whose second derivatives are h-convex via fractional. J. Fract. Calc. Appl. 6(1), 110–119 (2015) MathSciNet
20.
go back to reference Wang, J., Deng, J., Fečkan, M.: Hermite–Hadamard-type inequalities for r-convex functions based on the use of Riemann–Liouville fractional integrals. Ukr. Math. J. 65(2), 193–211 (2013) MathSciNetCrossRefMATH Wang, J., Deng, J., Fečkan, M.: Hermite–Hadamard-type inequalities for r-convex functions based on the use of Riemann–Liouville fractional integrals. Ukr. Math. J. 65(2), 193–211 (2013) MathSciNetCrossRefMATH
21.
go back to reference Mubeen, S., Habibullah, G.M.: k-fractional integrals and application. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012) MathSciNetMATH Mubeen, S., Habibullah, G.M.: k-fractional integrals and application. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012) MathSciNetMATH
22.
go back to reference Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017) MathSciNetCrossRefMATH Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017) MathSciNetCrossRefMATH
23.
go back to reference Ali, A., Gulshan, G., Hussain, R., Latif, A., Muddassar, M.: Generalized inequalities of the type of Hermite–Hadamard–Fejer with quasi-convex functions by way of k-fractional derivatives. J. Comput. Anal. Appl. 22(7), 1208–1219 (2017) MathSciNet Ali, A., Gulshan, G., Hussain, R., Latif, A., Muddassar, M.: Generalized inequalities of the type of Hermite–Hadamard–Fejer with quasi-convex functions by way of k-fractional derivatives. J. Comput. Anal. Appl. 22(7), 1208–1219 (2017) MathSciNet
24.
go back to reference Tomar, M., Mubeen, S., Choi, J.: Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016, Article ID 234 (2016) MathSciNetCrossRefMATH Tomar, M., Mubeen, S., Choi, J.: Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016, Article ID 234 (2016) MathSciNetCrossRefMATH
25.
go back to reference Romero, L.G., Luque, L.L., Dorrego, G.A., Cerutti, R.A.: On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 8(1), 41–51 (2013) MathSciNetCrossRefMATH Romero, L.G., Luque, L.L., Dorrego, G.A., Cerutti, R.A.: On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 8(1), 41–51 (2013) MathSciNetCrossRefMATH
26.
go back to reference Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015) MathSciNet Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015) MathSciNet
27.
go back to reference Tariboon, J., Ntouyas, S.K., Tomar, M.: Some new integral inequalities for k-fractional integrals. Malaya J. Mat. 4(1), 100–110 (2016) Tariboon, J., Ntouyas, S.K., Tomar, M.: Some new integral inequalities for k-fractional integrals. Malaya J. Mat. 4(1), 100–110 (2016)
29.
go back to reference Noor, M.A., Noor, K.I., Awan, M.U., Khan, S.: Fractional Hermite–Hadamard inequalities for some new classes of Godunova–Levin functions. Appl. Math. Inf. Sci. 8(6), 2865–2872 (2014) MathSciNetCrossRefMATH Noor, M.A., Noor, K.I., Awan, M.U., Khan, S.: Fractional Hermite–Hadamard inequalities for some new classes of Godunova–Levin functions. Appl. Math. Inf. Sci. 8(6), 2865–2872 (2014) MathSciNetCrossRefMATH
30.
go back to reference Tunç, M., Göv, E., Şanal, Ü: On \(tgs\)-convex function and their inequalities. Facta Univ., Ser. Math. Inform. 30(5), 679–691 (2015) MathSciNetMATH Tunç, M., Göv, E., Şanal, Ü: On \(tgs\)-convex function and their inequalities. Facta Univ., Ser. Math. Inform. 30(5), 679–691 (2015) MathSciNetMATH
31.
go back to reference Tunç, M., Şubaş, Y., Karabayir, I.: On some Hadamard type inequalities for MT-convex functions. Int. J. Open Probl. Comput. Sci. Math. 6(2), 102–113 (2013) CrossRef Tunç, M., Şubaş, Y., Karabayir, I.: On some Hadamard type inequalities for MT-convex functions. Int. J. Open Probl. Comput. Sci. Math. 6(2), 102–113 (2013) CrossRef
32.
go back to reference Du, T.S., Liao, J.G., Li, Y.J.: Properties and integral inequalities of Hadamard–Simpson type for the generalized \((s,m)\)-preinvex functions. J. Nonlinear Sci. Appl. 9, 3112–3126 (2016) MathSciNetCrossRefMATH Du, T.S., Liao, J.G., Li, Y.J.: Properties and integral inequalities of Hadamard–Simpson type for the generalized \((s,m)\)-preinvex functions. J. Nonlinear Sci. Appl. 9, 3112–3126 (2016) MathSciNetCrossRefMATH
33.
go back to reference Peng, C., Zhou, C., Du, T.S.: Riemann–Liouville fractional Simpson’s inequalities through generalized \((m,h_{1},h_{2})\)-preinvexity. Ital. J. Pure Appl. Math. 38, 345–367 (2017) Peng, C., Zhou, C., Du, T.S.: Riemann–Liouville fractional Simpson’s inequalities through generalized \((m,h_{1},h_{2})\)-preinvexity. Ital. J. Pure Appl. Math. 38, 345–367 (2017)
34.
go back to reference İşcan, İ.: Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl. Anal. 93(9), 1846–1862 (2014) MathSciNetCrossRefMATH İşcan, İ.: Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl. Anal. 93(9), 1846–1862 (2014) MathSciNetCrossRefMATH
35.
go back to reference Özdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via \((\alpha ,m)\)-convexity. Comput. Math. Appl. 61, 2614–2620 (2011) MathSciNetCrossRefMATH Özdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via \((\alpha ,m)\)-convexity. Comput. Math. Appl. 61, 2614–2620 (2011) MathSciNetCrossRefMATH
36.
go back to reference Sarikaya, M.Z., Set, E., Özdemir, M.E.: On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9(1), 37–45 (2013) MathSciNetMATH Sarikaya, M.Z., Set, E., Özdemir, M.E.: On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9(1), 37–45 (2013) MathSciNetMATH
Metadata
Title
Extensions of different type parameterized inequalities for generalized -preinvex mappings via k-fractional integrals
Authors
Yao Zhang
Ting-Song Du
Hao Wang
Yan-Jun Shen
Artion Kashuri
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1639-5

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner