Skip to main content
Top
Published in: Neural Computing and Applications 20/2021

07-05-2021 | Original Article

Extensive framework based on novel convolutional and variational autoencoder based on maximization of mutual information for anomaly detection

Authors: Qien Yu, Muthu Subash Kavitha, Takio Kurita

Published in: Neural Computing and Applications | Issue 20/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In present study, we proposed a general framework based on a convolutional kernel and a variational autoencoder (CVAE) for anomaly detection on both complex image and vector datasets. The main idea is to maximize mutual information (MMI) through regularizing key information as follows: (1) the features between original input and the representation of latent space, (2) that between the first convolutional layer output and the last convolutional layer input, (3) original input and output of the decoder to train the model. Therefore, the proposed CVAE is optimized by combining the representations learned across the three different objectives targeted at MMI on both local and global variables with the original training objective function of Kullback–Leibler divergence distributions. It allowed achieving the additional supervision power for the detection of image and vector data anomalies using convolutional and fully connected layers, respectively. Our proposal CVAE combined by regularizing multiple discriminator spaces to detect anomalies was introduced for the first time as far as we know. To evaluate the reliability of the proposed CVAE-MMI, it was compared with the convolutional autoencoder-based model using the original objective function. Furthermore, the performance of our network was compared over state-of-the-art approaches in distinguishing anomalies concerning both image and vector datasets. The proposed structure outperformed the state-of-the-arts with high and stable area under the curve values.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Calderara S, Heinemann U, Prati A, Cucchiara R, Tishby N (2011) Detectinganomalies in peoples trajectories using spectral graph analysis. Comput Vis Image Underst 115(8):1099–1111CrossRef Calderara S, Heinemann U, Prati A, Cucchiara R, Tishby N (2011) Detectinganomalies in peoples trajectories using spectral graph analysis. Comput Vis Image Underst 115(8):1099–1111CrossRef
2.
go back to reference Hasan M, Choi J, Neumann J, RoyChowdhury AK, Davis LS (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742 Hasan M, Choi J, Neumann J, RoyChowdhury AK, Davis LS (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742
3.
go back to reference Kumar A (2008) Computer-vision-based fabric defect detection: a survey. IEEE Trans Ind Electron 55(1):348–363CrossRef Kumar A (2008) Computer-vision-based fabric defect detection: a survey. IEEE Trans Ind Electron 55(1):348–363CrossRef
4.
go back to reference Wang Y, Liu M, Bao Z, Zhang S (2019) Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systems. Neural Comput Appl 31(10):6719–6731CrossRef Wang Y, Liu M, Bao Z, Zhang S (2019) Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systems. Neural Comput Appl 31(10):6719–6731CrossRef
5.
go back to reference Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging. Springer, pp 146–157 Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging. Springer, pp 146–157
6.
go back to reference Kavitha MS, Kurita T, Park S-Y, Chien S-I, Bae J-S, Ahn B-C (2017) Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS ONE 12(12):e0189974CrossRef Kavitha MS, Kurita T, Park S-Y, Chien S-I, Bae J-S, Ahn B-C (2017) Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS ONE 12(12):e0189974CrossRef
7.
go back to reference Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng 27(5):1369–1382CrossRef Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng 27(5):1369–1382CrossRef
8.
go back to reference Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp 93–104 Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp 93–104
9.
go back to reference Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N (2017) Abnormal event detection in videos using generative adversarialnets. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 1577–1581 Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N (2017) Abnormal event detection in videos using generative adversarialnets. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 1577–1581
10.
go back to reference Chalapathy R, Menon AK, Chawla S (2017) Robust, deep and inductive anomaly detection. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 36–51 Chalapathy R, Menon AK, Chawla S (2017) Robust, deep and inductive anomaly detection. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 36–51
11.
go back to reference Kim D, Yang H, Chung M, Cho S, Kim H, Kim M, Kim K, Kim E (2018) Squeezed convolutional variational autoencoder for unsupervised anomalydetection in edge device industrial internet of things. In: 2018 international conference on information and computer technologies (ICICT). IEEE, pp 67–71 Kim D, Yang H, Chung M, Cho S, Kim H, Kim M, Kim K, Kim E (2018) Squeezed convolutional variational autoencoder for unsupervised anomalydetection in edge device industrial internet of things. In: 2018 international conference on information and computer technologies (ICICT). IEEE, pp 67–71
13.
go back to reference Nowozin S, Cseke B, Tomioka R (2016) f-gan: training generative neural samplers using variational divergence minimization. In: Advances in neural information processing systems, pp 271–279 Nowozin S, Cseke B, Tomioka R (2016) f-gan: training generative neural samplers using variational divergence minimization. In: Advances in neural information processing systems, pp 271–279
14.
go back to reference Chen Z, Yeo CK, Lee BS, Lau CT (2018) Autoencoder-based network anomaly detection. In: 2018 wireless telecommunications symposium (WTS). IEEE, pp 1–5 Chen Z, Yeo CK, Lee BS, Lau CT (2018) Autoencoder-based network anomaly detection. In: 2018 wireless telecommunications symposium (WTS). IEEE, pp 1–5
15.
go back to reference Pol A, Berger V, Cerminara G, Germain C, Pierini M (2019) Anomaly detection with conditional variational autoencoders. In: IEEE International conference on machine learning and applications (ICMLA), pp 1651–1657 Pol A, Berger V, Cerminara G, Germain C, Pierini M (2019) Anomaly detection with conditional variational autoencoders. In: IEEE International conference on machine learning and applications (ICMLA), pp 1651–1657
16.
go back to reference An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Spec Lect IE 2(1):1–18 An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Spec Lect IE 2(1):1–18
17.
go back to reference Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2019) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng 32:1517–1528 Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2019) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng 32:1517–1528
18.
go back to reference Kawachi Y, Koizumi Y, Harada N (2018) Complementary set variational autoencoder for supervised anomaly detection. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2366–2370 Kawachi Y, Koizumi Y, Harada N (2018) Complementary set variational autoencoder for supervised anomaly detection. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2366–2370
19.
go back to reference Perera P, Nallapati R, Xiang B (2019) Ocgan: one-class novelty detection using gans with constrained latent representations. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2898–2906 Perera P, Nallapati R, Xiang B (2019) Ocgan: one-class novelty detection using gans with constrained latent representations. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2898–2906
20.
21.
go back to reference Ji X, Henriques JF, Vedaldi A (2018) Invariant information distillation for unsupervised image segmentation and clustering. arXiv:1807.06653 Ji X, Henriques JF, Vedaldi A (2018) Invariant information distillation for unsupervised image segmentation and clustering. arXiv:​1807.​06653
24.
go back to reference Bereziński P, Jasiul B, Szpyrka M (2015) An entropy-based network anomaly detection method. Entropy 17(4):2367–2408CrossRef Bereziński P, Jasiul B, Szpyrka M (2015) An entropy-based network anomaly detection method. Entropy 17(4):2367–2408CrossRef
25.
go back to reference Koch-Janusz M, Ringel Z (2018) Mutual information, neural networks and there normalization group. Nat Phys 14(6):578–582CrossRef Koch-Janusz M, Ringel Z (2018) Mutual information, neural networks and there normalization group. Nat Phys 14(6):578–582CrossRef
26.
go back to reference Huang W, Zhang J, Sun H, Ma H, Cai Z (2017) An anomaly detection method based on normalized mutual information feature selection and quantum wavelet neural network. Wirel Pers Commun 96(2):2693–2713CrossRef Huang W, Zhang J, Sun H, Ma H, Cai Z (2017) An anomaly detection method based on normalized mutual information feature selection and quantum wavelet neural network. Wirel Pers Commun 96(2):2693–2713CrossRef
27.
go back to reference Jagota A (1991) Novelty detection on a very large number of memories stored in a hopfield-style network. In: IJCNN-91-seattle international joint conference on neural networks, vol 2. IEEE, pp 905-vol Jagota A (1991) Novelty detection on a very large number of memories stored in a hopfield-style network. In: IJCNN-91-seattle international joint conference on neural networks, vol 2. IEEE, pp 905-vol
28.
go back to reference Moya MM, Koch MW, Hostetler LD (1993) One-class classifier networks for target recognition applications. NASA STI/recon technical report N93 Moya MM, Koch MW, Hostetler LD (1993) One-class classifier networks for target recognition applications. NASA STI/recon technical report N93
29.
go back to reference Ritter G, Gallegos MT (1997) Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognit Lett 18(6):525–539CrossRef Ritter G, Gallegos MT (1997) Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognit Lett 18(6):525–539CrossRef
30.
go back to reference Wang G, Yang J, Li R (2017) Imbalanced SVM-based anomaly detection algorithm for imbalanced training datasets. ETRI J 39(5):621–631CrossRef Wang G, Yang J, Li R (2017) Imbalanced SVM-based anomaly detection algorithm for imbalanced training datasets. ETRI J 39(5):621–631CrossRef
31.
go back to reference Khreich W, Khosravifar B, Hamou-Lhadj A, Talhi C (2017) An anomaly detection system based on variable N-gram features and one-class SVM. Inf Softw Technol 91:186–197CrossRef Khreich W, Khosravifar B, Hamou-Lhadj A, Talhi C (2017) An anomaly detection system based on variable N-gram features and one-class SVM. Inf Softw Technol 91:186–197CrossRef
32.
go back to reference Tax DM, Duin RP (1999) Support vector domain description. Pattern Rcognit Lett 20(11–13):1191–1199CrossRef Tax DM, Duin RP (1999) Support vector domain description. Pattern Rcognit Lett 20(11–13):1191–1199CrossRef
33.
go back to reference Yeung D-Y, Chow C (2002) Parzen-window network intrusion detectors. In: Object recognition supported by user interaction for service robots, vol 4. IEEE, pp 385–388 Yeung D-Y, Chow C (2002) Parzen-window network intrusion detectors. In: Object recognition supported by user interaction for service robots, vol 4. IEEE, pp 385–388
34.
go back to reference Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3–4):237–253CrossRef Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3–4):237–253CrossRef
35.
go back to reference Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining out-liers from large data sets. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data, pp 427–438 Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining out-liers from large data sets. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data, pp 427–438
36.
go back to reference Yu Q, Kavitha MS, Kurita T (2019) Detection of one dimensional anomalies using a vector-based convolutional autoencoder. In: Asian conference on pattern recognition. Springer, pp 516–529 Yu Q, Kavitha MS, Kurita T (2019) Detection of one dimensional anomalies using a vector-based convolutional autoencoder. In: Asian conference on pattern recognition. Springer, pp 516–529
37.
go back to reference Marchi E, Vesperini F, Eyben F, Squartini S, Schuller B (2015) A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp. 1996–2000 Marchi E, Vesperini F, Eyben F, Squartini S, Schuller B (2015) A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp. 1996–2000
38.
go back to reference Sun J, Wang X, Xiong N, Shao J (2018) Learning sparse representation with variational auto-encoder for anomaly detection. IEEE Access 6:33353–33361CrossRef Sun J, Wang X, Xiong N, Shao J (2018) Learning sparse representation with variational auto-encoder for anomaly detection. IEEE Access 6:33353–33361CrossRef
39.
go back to reference Li D, Chen D, Goh J, Ng S-K (2018) Anomaly detection with generative adversarial networks for multivariate time series. arXiv:1809.04758 Li D, Chen D, Goh J, Ng S-K (2018) Anomaly detection with generative adversarial networks for multivariate time series. arXiv:​1809.​04758
40.
go back to reference Schlegl T, Seeböckk P, Waldstein SM, Langs G, Schmidt-Erfurth U (2019) f-anogan: fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal 54:30–44CrossRef Schlegl T, Seeböckk P, Waldstein SM, Langs G, Schmidt-Erfurth U (2019) f-anogan: fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal 54:30–44CrossRef
42.
go back to reference Park D, Hoshi Y, Kemp CC (2018) A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robot Autom Lett 3(3):1544–1551CrossRef Park D, Hoshi Y, Kemp CC (2018) A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robot Autom Lett 3(3):1544–1551CrossRef
43.
go back to reference Xu J, Durrett G (2018) Spherical latent spaces for stable variational autoencoders. In: Proceedings of the empirical methods in natural language processing, pp 4503–4513 Xu J, Durrett G (2018) Spherical latent spaces for stable variational autoencoders. In: Proceedings of the empirical methods in natural language processing, pp 4503–4513
44.
go back to reference Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in neural information processing systems, pp 2172–2180 Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in neural information processing systems, pp 2172–2180
45.
go back to reference Dieng AB, Kim Y, Rush AM, Blei DM (2019) Avoiding latent variable collapse with generative skip models. In: Proceedings on artificial intelligence and statistics, pp 2397–2405 Dieng AB, Kim Y, Rush AM, Blei DM (2019) Avoiding latent variable collapse with generative skip models. In: Proceedings on artificial intelligence and statistics, pp 2397–2405
46.
go back to reference Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, Bengio Y (2018) Learning deep representations by mutual information estimation and maximization. arXiv:1808.06670 Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, Bengio Y (2018) Learning deep representations by mutual information estimation and maximization. arXiv:​1808.​06670
47.
go back to reference Yu S, Principe JC (2019) Understanding autoencoders with information theoretic concepts. Neural Netw 117:104–123CrossRef Yu S, Principe JC (2019) Understanding autoencoders with information theoretic concepts. Neural Netw 117:104–123CrossRef
48.
go back to reference Abati D, Porrello A, Calderara S, Cucchiara R (2019) Latent space autoregression for novelty detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 481–490 Abati D, Porrello A, Calderara S, Cucchiara R (2019) Latent space autoregression for novelty detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 481–490
49.
go back to reference Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui SA, Binder A, Müller E, Kloft M (2018) Deep one-class classification. In: International conference on machine learning, pp 4393–4402 Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui SA, Binder A, Müller E, Kloft M (2018) Deep one-class classification. In: International conference on machine learning, pp 4393–4402
50.
go back to reference Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images
51.
go back to reference Coates A, Ng A, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning, pp 215–223 Coates A, Ng A, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning, pp 215–223
52.
go back to reference Pfahringer B (2000) Winning the kdd99 classification cup: bagged boosting. ACM SIGKDD Explor Newsl 1(2):65–66CrossRef Pfahringer B (2000) Winning the kdd99 classification cup: bagged boosting. ACM SIGKDD Explor Newsl 1(2):65–66CrossRef
53.
go back to reference Yeh I-C, Lien C-H (2009) The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst Appl 36(2):2473–2480CrossRef Yeh I-C, Lien C-H (2009) The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst Appl 36(2):2473–2480CrossRef
54.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image, pp 248–255 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image, pp 248–255
55.
go back to reference Bishop CM (2007) Pattern recognition and machine learning (information science and statistics), 1st edn. Springer, Berlin Bishop CM (2007) Pattern recognition and machine learning (information science and statistics), 1st edn. Springer, Berlin
56.
go back to reference Akçay S, Atapour-Abarghouei A, Breckon TP (2019) Skip-ganomaly: skipconnected and adversarially trained encoder–decoder anomaly detection. arXiv:1901.08954 Akçay S, Atapour-Abarghouei A, Breckon TP (2019) Skip-ganomaly: skipconnected and adversarially trained encoder–decoder anomaly detection. arXiv:​1901.​08954
57.
go back to reference Clifton L, Clifton DA, Watkinson PJ, Tarassenko L (2011) Identification of patient deterioration in vital-sign data using one-class support vector machines, pp 125–131 Clifton L, Clifton DA, Watkinson PJ, Tarassenko L (2011) Identification of patient deterioration in vital-sign data using one-class support vector machines, pp 125–131
58.
go back to reference Van den Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A et al (2016) Conditional image generation with pixelcnn decoders. In: Advances in neural information processing systems, pp 4790–4798 Van den Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A et al (2016) Conditional image generation with pixelcnn decoders. In: Advances in neural information processing systems, pp 4790–4798
59.
go back to reference Adler A, Elad M, Hel-Or Y, Rivlin E (2015) Sparse coding with anomaly detection. J Signal Process Syst 79(2):179–188CrossRef Adler A, Elad M, Hel-Or Y, Rivlin E (2015) Sparse coding with anomaly detection. J Signal Process Syst 79(2):179–188CrossRef
60.
go back to reference Abe N, Zadrozny B, Langford J (2006) Outlier detection by active learning. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 504–509 Abe N, Zadrozny B, Langford J (2006) Outlier detection by active learning. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 504–509
61.
go back to reference Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining, pp 157–166 Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining, pp 157–166
62.
go back to reference Hou D, Cong Y, Sun G, Liu J, Xu X (2019) Anomaly detection via adaptive greedy model. Neurocomputing 330:369–379CrossRef Hou D, Cong Y, Sun G, Liu J, Xu X (2019) Anomaly detection via adaptive greedy model. Neurocomputing 330:369–379CrossRef
63.
go back to reference Akçay S, Atapour-Abarghouei A, Breckon TP (2018) Ganomaly: semi-supervised anomaly detection via adversarial training. In: Asian conference on computer vision. Springer, pp 622–637 Akçay S, Atapour-Abarghouei A, Breckon TP (2018) Ganomaly: semi-supervised anomaly detection via adversarial training. In: Asian conference on computer vision. Springer, pp 622–637
64.
go back to reference Bergmann P, Batzner K, Fauser M, Sattlegger D, Steger C (2021) The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int J Comput Vis 1–22 Bergmann P, Batzner K, Fauser M, Sattlegger D, Steger C (2021) The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int J Comput Vis 1–22
Metadata
Title
Extensive framework based on novel convolutional and variational autoencoder based on maximization of mutual information for anomaly detection
Authors
Qien Yu
Muthu Subash Kavitha
Takio Kurita
Publication date
07-05-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06017-3

Other articles of this Issue 20/2021

Neural Computing and Applications 20/2021 Go to the issue

Premium Partner