Skip to main content
Top

2017 | OriginalPaper | Chapter

Extreme Learning Machine Based on Evolutionary Multi-objective Optimization

Authors : Yaoming Cai, Xiaobo Liu, Yu Wu, Peng Hu, Ruilin Wang, Bi Wu, Zhihua Cai

Published in: Bio-inspired Computing: Theories and Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extreme learning machine (ELM), which proposed for generalized single-hidden layer feedforward neural networks, has become a popular research topic due to its fast learning speed, good generalization ability, and ease of implementation. However, ELM faces redundancy and randomness in the hidden layer which caused by random mapping of features. In ELM, although evolutionary algorithms have archived impressive improvement, they have not considered the sparsity of the hidden layers. In this paper, a hybrid learning algorithm is proposed, termed EMO-ELM, which adopts evolutionary multi-objective algorithm to optimise two conflict objectives simultaneously. Furthermore, the proposed method can be used for supervised classification and unsupervised sparse feature extraction tasks. Simulations on many UCI datasets have demonstrated that EMO-ELM generally outperforms the original ELM algorithm as well as several ELM variants in classification tasks, moreover, EMO-ELM achieves a competitive performance to PCA in sparse feature extraction tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)CrossRefMathSciNet Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)CrossRefMathSciNet
2.
go back to reference Huang, G.B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879–892 (2006)CrossRef Huang, G.B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879–892 (2006)CrossRef
3.
go back to reference Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef
4.
go back to reference Minhas, R., Baradarani, A., Seifzadeh, S., Wu, Q.J.: Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73(10), 1906–1917 (2010)CrossRef Minhas, R., Baradarani, A., Seifzadeh, S., Wu, Q.J.: Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73(10), 1906–1917 (2010)CrossRef
5.
go back to reference Zong, W., Huang, G.B.: Face recognition based on extreme learning machine. Neurocomputing 74(16), 2541–2551 (2011)CrossRef Zong, W., Huang, G.B.: Face recognition based on extreme learning machine. Neurocomputing 74(16), 2541–2551 (2011)CrossRef
6.
go back to reference Zeng, Y., Xu, X., Shen, D., Fang, Y., Xiao, Z.: Traffic sign recognition using kernel extreme learning machines with deep perceptual features. IEEE Trans. Intell. Transp. Syst. (2016) Zeng, Y., Xu, X., Shen, D., Fang, Y., Xiao, Z.: Traffic sign recognition using kernel extreme learning machines with deep perceptual features. IEEE Trans. Intell. Transp. Syst. (2016)
7.
go back to reference Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)CrossRef Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)CrossRef
8.
go back to reference Pal, M., Maxwell, A.E., Warner, T.A.: Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 4(9), 853–862 (2013)CrossRef Pal, M., Maxwell, A.E., Warner, T.A.: Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 4(9), 853–862 (2013)CrossRef
9.
go back to reference Lv, Q., Niu, X., Dou, Y., Xu, J., Lei, Y.: Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geosci. Remote Sens. Lett. 13(3), 434–438 (2016) Lv, Q., Niu, X., Dou, Y., Xu, J., Lei, Y.: Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geosci. Remote Sens. Lett. 13(3), 434–438 (2016)
10.
go back to reference Savojardo, C., Fariselli, P., Casadio, R.: Betaware: a machine-learning tool to detect and predict transmembrane beta barrel proteins in prokaryotes. Bioinformatics, bts728 (2013) Savojardo, C., Fariselli, P., Casadio, R.: Betaware: a machine-learning tool to detect and predict transmembrane beta barrel proteins in prokaryotes. Bioinformatics, bts728 (2013)
11.
go back to reference Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)CrossRef Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)CrossRef
12.
go back to reference Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)CrossRef Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)CrossRef
13.
14.
go back to reference Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Process. Lett. 17(8), 754–757 (2010)CrossRef Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Process. Lett. 17(8), 754–757 (2010)CrossRef
15.
go back to reference Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)CrossRefMATH Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)CrossRefMATH
16.
go back to reference Cao, J., Lin, Z., Huang, G.B.: Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36, 1–21 (2012)CrossRef Cao, J., Lin, Z., Huang, G.B.: Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36, 1–21 (2012)CrossRef
17.
go back to reference Li, K.E., Wang, R.A.N., Kwong, S.A.M., Cao, J.: Evolving extreme learning machine paradigm with adaptive operator selection and parameter control. Int. J. Uncert. Fuzz. Knowl.-Based Syst. 21(Suppl. 02), 143–154 (2013)CrossRefMathSciNet Li, K.E., Wang, R.A.N., Kwong, S.A.M., Cao, J.: Evolving extreme learning machine paradigm with adaptive operator selection and parameter control. Int. J. Uncert. Fuzz. Knowl.-Based Syst. 21(Suppl. 02), 143–154 (2013)CrossRefMathSciNet
18.
go back to reference Zhang, Y., Wu, J., Cai, Z., Zhang, P., Chen, L.: Memetic extreme learning machine. Pattern Recogn. 58, 135–148 (2016)CrossRef Zhang, Y., Wu, J., Cai, Z., Zhang, P., Chen, L.: Memetic extreme learning machine. Pattern Recogn. 58, 135–148 (2016)CrossRef
19.
go back to reference Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)CrossRef Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)CrossRef
20.
go back to reference Pan, L., He, C., Tian, Y., Su, Y., Zhang, X.: A region division based diversity maintaining approach for many-objective optimization. Integr. Comput.-Aided Eng. (Preprint), 1–18 (2017) Pan, L., He, C., Tian, Y., Su, Y., Zhang, X.: A region division based diversity maintaining approach for many-objective optimization. Integr. Comput.-Aided Eng. (Preprint), 1–18 (2017)
21.
go back to reference Gu, S., Cheng, R., Jin, Y.: Multi-objective ensemble generation. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 5(5), 234–245 (2015)CrossRef Gu, S., Cheng, R., Jin, Y.: Multi-objective ensemble generation. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 5(5), 234–245 (2015)CrossRef
22.
go back to reference Liu, J., Gong, M., Miao, Q., Wang, X., Li, H.: Structure learning for deep neural networks based on multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. (2017) Liu, J., Gong, M., Miao, Q., Wang, X., Li, H.: Structure learning for deep neural networks based on multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. (2017)
23.
go back to reference Gong, M., Liu, J., Li, H., Cai, Q., Su, L.: A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3263–77 (2015)CrossRefMathSciNet Gong, M., Liu, J., Li, H., Cai, Q., Su, L.: A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3263–77 (2015)CrossRefMathSciNet
24.
go back to reference Mao, W., Tian, M., Cao, X., Xu, J.: Model selection of extreme learning machine based on multi-objective optimization. Neural Comput. Appl. 22(3–4), 521–529 (2013)CrossRef Mao, W., Tian, M., Cao, X., Xu, J.: Model selection of extreme learning machine based on multi-objective optimization. Neural Comput. Appl. 22(3–4), 521–529 (2013)CrossRef
25.
go back to reference Huang, G.B.: What are extreme learning machines? filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn. Comput. 7(3), 263–278 (2015)CrossRef Huang, G.B.: What are extreme learning machines? filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn. Comput. 7(3), 263–278 (2015)CrossRef
26.
go back to reference Kasun, L.L.C., Yang, Y., Huang, G.B., Zhang, Z.: Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 25(8), 3906–3918 (2016)CrossRefMathSciNet Kasun, L.L.C., Yang, Y., Huang, G.B., Zhang, Z.: Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 25(8), 3906–3918 (2016)CrossRefMathSciNet
27.
28.
go back to reference Chao, T., Hongbo, P., Yansheng, L., Zhengrou, Z.: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2438–2442 (2015)CrossRef Chao, T., Hongbo, P., Yansheng, L., Zhengrou, Z.: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2438–2442 (2015)CrossRef
29.
go back to reference Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)CrossRef Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)CrossRef
30.
go back to reference Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef
Metadata
Title
Extreme Learning Machine Based on Evolutionary Multi-objective Optimization
Authors
Yaoming Cai
Xiaobo Liu
Yu Wu
Peng Hu
Ruilin Wang
Bi Wu
Zhihua Cai
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7179-9_32

Premium Partner