Skip to main content
Top
Published in: Journal of Electronic Materials 1/2024

01-11-2023 | Original Research Article

Fabrication and Characterization of TiO2 Thin Film–Nanorod-Based Hybrid Structures for Memristor Applications

Authors: S. Roy, N. Tripathy, D. Pradhan, P. K. Sahu, J. P. Kar

Published in: Journal of Electronic Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A hydrothermal process was used to grow titanium dioxide (TiO2) nanorods on p-type silicon substrates, and a dip-coating process was then used to fabricate TiO2 thin film–nanorod hybrid structures. The nanorod-like structures were obtained for processing temperatures of 160°C and 180°C. The thin films were dip-coated on the nanorods with a withdrawal speed of 1 cm/min. Afterwards, thin film–nanorod hybrid structures were annealed at 500°C for 1 h. Morphological characterization carried out by scanning electron microscopy (SEM) studies confirmed the formation of nanorods. XRD and Raman studies confirmed the presence of anatase and rutile phases of TiO2-based hybrid structures. The oxide charge density (Qox) and the interface charge density (Dit) of the hybrid structures were measured from the capacitance–voltage (C–V) plot. Qox and Dit were calculated as 2.29 × 1012 cm−2 and 0.89 × 1012 eV−1 cm−2, respectively, for a temperature of 180°C and growth time of 60 min. The resistive switching properties of TiO2-based hybrid structures showed a good on/off ratio, and hence the hybrid structure-based device can be considered a suitable element for memory devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Hu, T.W. Odom, and C.M. Lieber, Chemistry and Physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).CrossRef J. Hu, T.W. Odom, and C.M. Lieber, Chemistry and Physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).CrossRef
2.
go back to reference Z. Yuan and B. Su, Titanium oxide nanoribbons. Chem. Phys. Lett. 363, 362 (2002).CrossRef Z. Yuan and B. Su, Titanium oxide nanoribbons. Chem. Phys. Lett. 363, 362 (2002).CrossRef
3.
go back to reference S.J. Kwon, H.S. Song, H.B. Im, J.E. Nam, J.K. Kang, T.S. Hwang, and K.B. Yi, Preparationand characterization of rutile-anatase hybrid TiO2 thin film by hydrothermal synthesis. Clean Technol. 20, 306 (2015).CrossRef S.J. Kwon, H.S. Song, H.B. Im, J.E. Nam, J.K. Kang, T.S. Hwang, and K.B. Yi, Preparationand characterization of rutile-anatase hybrid TiO2 thin film by hydrothermal synthesis. Clean Technol. 20, 306 (2015).CrossRef
4.
go back to reference S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, and C.K. Hong, Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem. Mater. 27, 1541 (2015).CrossRef S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, and C.K. Hong, Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem. Mater. 27, 1541 (2015).CrossRef
5.
go back to reference Y.R. Park and K.J. Kim, Structural and optical properties of rutile and anatase TiO2 thin films: effects of Co doping. Thin Solid Films 484, 34 (2005).CrossRef Y.R. Park and K.J. Kim, Structural and optical properties of rutile and anatase TiO2 thin films: effects of Co doping. Thin Solid Films 484, 34 (2005).CrossRef
6.
go back to reference N. Tripathy, S.P. Ghosh, and J.P. Kar, Transformation of sputtered calcium copper titanate thin film into nanorods by sequential annealing. Ceram. Int. 44, 4052 (2018).CrossRef N. Tripathy, S.P. Ghosh, and J.P. Kar, Transformation of sputtered calcium copper titanate thin film into nanorods by sequential annealing. Ceram. Int. 44, 4052 (2018).CrossRef
7.
go back to reference C. Zhang, Y. Yan, Y. Sheng Zhao, and J. Yao, Synthesis and applications of organic nanorods, nanowires and nanotubes. Annu. Rep. Prog. Chem. Sect. C 109, 211 (2013).CrossRef C. Zhang, Y. Yan, Y. Sheng Zhao, and J. Yao, Synthesis and applications of organic nanorods, nanowires and nanotubes. Annu. Rep. Prog. Chem. Sect. C 109, 211 (2013).CrossRef
8.
go back to reference S.J. Limmer, T.P. Chou, and G.Z. Cao, Electrophoretic deposition fundamentals and applications a study on the growth of TiO2 nanorods using sol electrophoresis. J. Mater. Sci. 9, 895 (2004).CrossRef S.J. Limmer, T.P. Chou, and G.Z. Cao, Electrophoretic deposition fundamentals and applications a study on the growth of TiO2 nanorods using sol electrophoresis. J. Mater. Sci. 9, 895 (2004).CrossRef
9.
go back to reference G. Cao, Growth of oxide nanorod arrays through sol electrophoretic deposition. J. Phys. Chem. B 108, 19921 (2004).CrossRef G. Cao, Growth of oxide nanorod arrays through sol electrophoretic deposition. J. Phys. Chem. B 108, 19921 (2004).CrossRef
10.
go back to reference F. Neri and E. Mininno, Memetic compact differential evolution for Cartesian robot control. IEEE Comput. Intell. Mag. 5, 54 (2010).CrossRef F. Neri and E. Mininno, Memetic compact differential evolution for Cartesian robot control. IEEE Comput. Intell. Mag. 5, 54 (2010).CrossRef
11.
go back to reference J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 1 (2014).CrossRef J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 1 (2014).CrossRef
12.
go back to reference C. Jia, F. Wang, C. Jiang, J. Berakdar, and D. Xue, Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics. Nat. Publ. Gr. 1, 1111 (2015). C. Jia, F. Wang, C. Jiang, J. Berakdar, and D. Xue, Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics. Nat. Publ. Gr. 1, 1111 (2015).
13.
go back to reference I. Daniele, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 63002 (2016).CrossRef I. Daniele, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 63002 (2016).CrossRef
14.
go back to reference M. Shahsavari, Memristor technology and applications: an overview memristor technology and applications—an overview Mahyar Shahsavari. IEEE Electron Device Lett. 39, 500 (2018). M. Shahsavari, Memristor technology and applications: an overview memristor technology and applications—an overview Mahyar Shahsavari. IEEE Electron Device Lett. 39, 500 (2018).
15.
go back to reference J.M. Song and J.S. Lee, Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth. Sci. Rep. 6, 1 (2016). J.M. Song and J.S. Lee, Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth. Sci. Rep. 6, 1 (2016).
16.
go back to reference S.S. Mali, C.A. Betty, P.S. Patil, and C.K. Hong, Synthesis of a nanostructured rutile TiO2 electron transporting layer: via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of TiO2. J. Mater. Chem. A 5, 12340 (2017).CrossRef S.S. Mali, C.A. Betty, P.S. Patil, and C.K. Hong, Synthesis of a nanostructured rutile TiO2 electron transporting layer: via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of TiO2. J. Mater. Chem. A 5, 12340 (2017).CrossRef
17.
go back to reference C.Y. Lin, C.Y. Wu, C.Y. Wu, T.Y. Tseng, and C. Hu, Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 102, 1 (2007).CrossRef C.Y. Lin, C.Y. Wu, C.Y. Wu, T.Y. Tseng, and C. Hu, Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 102, 1 (2007).CrossRef
18.
go back to reference W. Shen, R. Dittmann, U. Breuer, and R. Waser, Improved endurance behavior of resistive switching in (Ba, Sr) TiO3 thin films with W top electrode. Appl. Phys. Lett. 93, 222102 (2008).CrossRef W. Shen, R. Dittmann, U. Breuer, and R. Waser, Improved endurance behavior of resistive switching in (Ba, Sr) TiO3 thin films with W top electrode. Appl. Phys. Lett. 93, 222102 (2008).CrossRef
19.
go back to reference S.R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte. AIP Adv. 2, 022144 (2012).CrossRef S.R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte. AIP Adv. 2, 022144 (2012).CrossRef
20.
go back to reference R.G. Breckenridge and W.R. Hosler, Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91, 793 (1953).CrossRef R.G. Breckenridge and W.R. Hosler, Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91, 793 (1953).CrossRef
21.
go back to reference B.M.S. Sander, M.J. Côtø, W. Gu, B.M. Kile, and C.P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv. Mater. 04469, 2052 (2004).CrossRef B.M.S. Sander, M.J. Côtø, W. Gu, B.M. Kile, and C.P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv. Mater. 04469, 2052 (2004).CrossRef
22.
go back to reference B.B. Lakshmi, P.K. Dorhout, and C.R. Martin, Sol–gel template synthesis of semiconductor nanostructures. Chem. Mater. 4756, 857 (1997).CrossRef B.B. Lakshmi, P.K. Dorhout, and C.R. Martin, Sol–gel template synthesis of semiconductor nanostructures. Chem. Mater. 4756, 857 (1997).CrossRef
23.
go back to reference A.S. Attar, S. Mirdamadi, F. Hajiesmaeilbaigi, and M.S. Ghamsari, Growth of TiO2 nanorods by sol–gel template process growth of TiO2 nanorods by sol–gel template process. J. Mater. Sci. Technol. 1, 611 (2007). A.S. Attar, S. Mirdamadi, F. Hajiesmaeilbaigi, and M.S. Ghamsari, Growth of TiO2 nanorods by sol–gel template process growth of TiO2 nanorods by sol–gel template process. J. Mater. Sci. Technol. 1, 611 (2007).
24.
go back to reference N. Prepared, L. Coating, and P.M. Templates, Nanotubes Prepared by Layer-by-Layer Coating, 1849 (2003). N. Prepared, L. Coating, and P.M. Templates, Nanotubes Prepared by Layer-by-Layer Coating, 1849 (2003).
25.
go back to reference Y. Wu and P. Yang, Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).CrossRef Y. Wu and P. Yang, Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).CrossRef
26.
go back to reference S.K. Pradhan, P.J. Reucroft, F. Yang, and A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).CrossRef S.K. Pradhan, P.J. Reucroft, F. Yang, and A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).CrossRef
27.
go back to reference M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, U.V. Park, and V. Pennsyl, Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. B 110, 16179 (2006).CrossRef M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, U.V. Park, and V. Pennsyl, Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. B 110, 16179 (2006).CrossRef
28.
go back to reference J. Shi and X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).CrossRef J. Shi and X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).CrossRef
29.
go back to reference J. Lee, D. Hong, S. Hong, and J. Young, Sensors and actuators B : chemical short communication A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens. Actuators B Chem. 160, 1494 (2011).CrossRef J. Lee, D. Hong, S. Hong, and J. Young, Sensors and actuators B : chemical short communication A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens. Actuators B Chem. 160, 1494 (2011).CrossRef
30.
go back to reference M. Iraj, F.D. Nayeri, E. Asl-Soleimani, and K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J. Alloys Compd. 659, 44 (2016).CrossRef M. Iraj, F.D. Nayeri, E. Asl-Soleimani, and K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J. Alloys Compd. 659, 44 (2016).CrossRef
31.
go back to reference C. Tan and H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 1 (2015).CrossRef C. Tan and H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 1 (2015).CrossRef
32.
go back to reference V. Senthilkumar, A. Kathalingam, V. Kannan, K. Senthil, and J.K. Rhee, Reproducible resistive switching in hydrothermal processed TiO2 nanorod film for non-volatile memory applications, Sens. Actuators A Phys. 194, 135 (2013).CrossRef V. Senthilkumar, A. Kathalingam, V. Kannan, K. Senthil, and J.K. Rhee, Reproducible resistive switching in hydrothermal processed TiO2 nanorod film for non-volatile memory applications, Sens. Actuators A Phys. 194, 135 (2013).CrossRef
33.
go back to reference F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, and R. Yang, Realization of rectifying and resistive switching behaviors of TiO2 nanorod arrays for nonvolatile memory. Electrochem. Solid-State Lett. 14, 422 (2011).CrossRef F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, and R. Yang, Realization of rectifying and resistive switching behaviors of TiO2 nanorod arrays for nonvolatile memory. Electrochem. Solid-State Lett. 14, 422 (2011).CrossRef
34.
go back to reference M. Xiao, K.P. Musselman, W.W. Duley, and Y.N. Zhou, Reliable and low-power multilevel resistive switching in TiO2 nanorod arrays structured with a TiOx seed layer. ACS Appl. Mater. Interfaces 9, 4808 (2017).CrossRef M. Xiao, K.P. Musselman, W.W. Duley, and Y.N. Zhou, Reliable and low-power multilevel resistive switching in TiO2 nanorod arrays structured with a TiOx seed layer. ACS Appl. Mater. Interfaces 9, 4808 (2017).CrossRef
35.
go back to reference A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, and T.D. Dongale, Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: effect of growth temperature. Mater. Des. 151, 37 (2018).CrossRef A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, and T.D. Dongale, Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: effect of growth temperature. Mater. Des. 151, 37 (2018).CrossRef
36.
go back to reference B. Sun, Y. Liu, F. Lou, and P. Chen, White-light-controlled resistive switching chearacteristics of TiO2/Cu2O composite nanorods array. Chem. Phys. 457, 28 (2015).CrossRef B. Sun, Y. Liu, F. Lou, and P. Chen, White-light-controlled resistive switching chearacteristics of TiO2/Cu2O composite nanorods array. Chem. Phys. 457, 28 (2015).CrossRef
37.
go back to reference S. Roy, N. Tripathy, D. Pradhan, P.K. Sahu, and J.P. Kar, Applied surface science electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications. Appl. Surf. Sci. 449, 181 (2018).CrossRef S. Roy, N. Tripathy, D. Pradhan, P.K. Sahu, and J.P. Kar, Applied surface science electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications. Appl. Surf. Sci. 449, 181 (2018).CrossRef
38.
go back to reference B. Mishra, P. Ghildiyal, S. Agarkar, and D. Khushalani, Synthetic precursor to vertical TiO2 nanowires. Mater. Res. Express 1, 025005 (2014).CrossRef B. Mishra, P. Ghildiyal, S. Agarkar, and D. Khushalani, Synthetic precursor to vertical TiO2 nanowires. Mater. Res. Express 1, 025005 (2014).CrossRef
39.
go back to reference X. Meng, D. Shin, S.M. Yu, M. Park, C. Yang, J.H. Lee, and J. Yoo, Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass. J. Nanosci. Nanotechnol. 14, 8839 (2014).CrossRef X. Meng, D. Shin, S.M. Yu, M. Park, C. Yang, J.H. Lee, and J. Yoo, Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass. J. Nanosci. Nanotechnol. 14, 8839 (2014).CrossRef
40.
go back to reference A. Kumar, A.R. Madaria, and C. Zhou, Jp100491H.Pdf, 7787 (2010). A. Kumar, A.R. Madaria, and C. Zhou, Jp100491H.Pdf, 7787 (2010).
41.
go back to reference V. Jordan, U. Javornik, J. Plavec, A. Podgornik, and A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 1 (2016).CrossRef V. Jordan, U. Javornik, J. Plavec, A. Podgornik, and A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 1 (2016).CrossRef
42.
go back to reference M. Torabi, M. Drahansky, M. Paridah, A. Moradbak, A. Mohamed, F. Abdulwahab taiwo Owolabi, M. Asniza, and S.H. Abdul Khalid, We Are IntechOpen, the World’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%, Intech i, 13 (2016). M. Torabi, M. Drahansky, M. Paridah, A. Moradbak, A. Mohamed, F. Abdulwahab taiwo Owolabi, M. Asniza, and S.H. Abdul Khalid, We Are IntechOpen, the World’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%, Intech i, 13 (2016).
43.
go back to reference A. Morais, C. Longo, J.R. Araujo, M. Barroso, J.R. Durrant, and A.F. Nogueira, Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. Phys. Chem. Chem. Phys. 18, 2608 (2016).CrossRef A. Morais, C. Longo, J.R. Araujo, M. Barroso, J.R. Durrant, and A.F. Nogueira, Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. Phys. Chem. Chem. Phys. 18, 2608 (2016).CrossRef
44.
go back to reference H. Pan, X. Qiu, I.N. Ivanov, H.M. Meyer, W. Wang, W. Zhu, M.P. Paranthaman, Z. Zhang, G. Eres, and B. Gu, Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Appl. Catal. B Environ. 93, 90 (2009).CrossRef H. Pan, X. Qiu, I.N. Ivanov, H.M. Meyer, W. Wang, W. Zhu, M.P. Paranthaman, Z. Zhang, G. Eres, and B. Gu, Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Appl. Catal. B Environ. 93, 90 (2009).CrossRef
45.
go back to reference C. Maheu, L. Cardenas, E. Puzenat, P. Afanasiev, and C. Geantet, UPS and uv spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys. Chem. Chem. Phys. 20, 25629 (2018).CrossRef C. Maheu, L. Cardenas, E. Puzenat, P. Afanasiev, and C. Geantet, UPS and uv spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys. Chem. Chem. Phys. 20, 25629 (2018).CrossRef
46.
go back to reference C.H. Huang, J.S. Huang, S.M. Lin, W.Y. Chang, J.H. He, and Y.L. Chueh, ZnO 1–x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407 (2012).CrossRef C.H. Huang, J.S. Huang, S.M. Lin, W.Y. Chang, J.H. He, and Y.L. Chueh, ZnO 1–x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407 (2012).CrossRef
47.
go back to reference P. Bamola, B. Singh, A. Bhoumik, M. Sharma, C. Dwivedi, M. Singh, G.K. Dalapati, and H. Sharma, Mixed-phase TiO2 nanotube-nanorod hybrid arrays for memory-based resistive switching devices. ACS Appl. Nano Mater. 3, 10591 (2020).CrossRef P. Bamola, B. Singh, A. Bhoumik, M. Sharma, C. Dwivedi, M. Singh, G.K. Dalapati, and H. Sharma, Mixed-phase TiO2 nanotube-nanorod hybrid arrays for memory-based resistive switching devices. ACS Appl. Nano Mater. 3, 10591 (2020).CrossRef
48.
go back to reference N. Mullani, I. Ali, T.D. Dongale, G.H. Kim, B.J. Choi, M.A. Basit, and T.J. Park, Improved resistive switching behavior of multiwalled carbon nanotube/TiO2 nanorods composite film by increased oxygen vacancy reservoir. Mater. Sci. Semicond. Process. 108, 104907 (2020).CrossRef N. Mullani, I. Ali, T.D. Dongale, G.H. Kim, B.J. Choi, M.A. Basit, and T.J. Park, Improved resistive switching behavior of multiwalled carbon nanotube/TiO2 nanorods composite film by increased oxygen vacancy reservoir. Mater. Sci. Semicond. Process. 108, 104907 (2020).CrossRef
49.
go back to reference D.S. Jeong, H. Schroeder, and R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt TiO2 Pt stack. Electrochem. Solid-State Lett. 10, 51 (2007).CrossRef D.S. Jeong, H. Schroeder, and R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt TiO2 Pt stack. Electrochem. Solid-State Lett. 10, 51 (2007).CrossRef
50.
go back to reference C.H. Huang, T.S. Chou, J.S. Huang, S.M. Lin, and Y.L. Chueh, Self-selecting resistive switching scheme using TiO2 nanorod arrays. Sci. Rep. 7, 1 (2017). C.H. Huang, T.S. Chou, J.S. Huang, S.M. Lin, and Y.L. Chueh, Self-selecting resistive switching scheme using TiO2 nanorod arrays. Sci. Rep. 7, 1 (2017).
51.
go back to reference Y. Yu, C. Wang, C. Jiang, I. Abrahams, Z. Du, Q. Zhang, J. Sun, and X. Huang, Resistive switching behavior in memristors with TiO2 nanorod arrays of different dimensions. Appl. Surf. Sci. 485, 222 (2019).CrossRef Y. Yu, C. Wang, C. Jiang, I. Abrahams, Z. Du, Q. Zhang, J. Sun, and X. Huang, Resistive switching behavior in memristors with TiO2 nanorod arrays of different dimensions. Appl. Surf. Sci. 485, 222 (2019).CrossRef
Metadata
Title
Fabrication and Characterization of TiO2 Thin Film–Nanorod-Based Hybrid Structures for Memristor Applications
Authors
S. Roy
N. Tripathy
D. Pradhan
P. K. Sahu
J. P. Kar
Publication date
01-11-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10733-y

Other articles of this Issue 1/2024

Journal of Electronic Materials 1/2024 Go to the issue