Skip to main content
Top
Published in: Microsystem Technologies 8/2017

26-09-2016 | Technical Paper

Fabrication and effect study of microfluidic SERS chip with integrated surface liquid core optical waveguide modified with nano gold

Authors: Chunyan Wang, Yi Xu, Rong Wang, Huazhou Zhao, Songtao Xiang, Li Chen, Xueqiang Qi

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel microfluidic chip with integrated Teflon AF1600 surface liquid core optical waveguide (LCW) modified with nano gold was proposed and fabricated in this article. Physical deposite method was used to integrate Teflon AF1600 LCW into microchannel. After that, the inner surface of Teflon AF1600 LCW was chemically modified at temperature of 40 °C, subsequent nano gold were in situ immobilied on the silanized inner surface of Teflon AF LCW precoated with a thin layer of poly(diallyldimethylammonium chloride) within microchannel by a chemical self-assembly method. Under the optimized conditions, the prepared microfluidic SERS chip exhibited high sensitivity for R6G with detection limit of 10−11 mol/L and SERS enhancement factor (EF) of 2.7 × 108. Compared to single nano gold SERS enhancement substrate within a microfluidic chip, the SERS detection sensitivity for R6G was improved 4 orders of magnitude. Apart from high SERS enhancement effect, the as-prepared integrated microstructure had extremely good SERS detection reproducibility and duration stability. Furthermore, it was successfully used to detect the bovine serum albumin (BSA), and exhibited excellent SERS response. The research showed great prospects and technical support for design and fabrication of integrated SERS microfluidic chip and sensitive detection of trace biochemical samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Altkorn R, Koev I, Van Duyne RP, Litorja M (1997) Low-loss liquid core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl Opt 36:8992–8998CrossRef Altkorn R, Koev I, Van Duyne RP, Litorja M (1997) Low-loss liquid core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl Opt 36:8992–8998CrossRef
go back to reference Altkorn R, Koev I, Pelletier MJ (1999) Raman performance characteristics of Teflon–AF 2400 liquid-core optical-fiber sample cells. Appl Spectrosc 53:1169–1176CrossRef Altkorn R, Koev I, Pelletier MJ (1999) Raman performance characteristics of Teflon–AF 2400 liquid-core optical-fiber sample cells. Appl Spectrosc 53:1169–1176CrossRef
go back to reference Anne Marz TH, Dana Cialla, Michael Schmitta (2011) Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy—concepts and applications. Lab Chip 11:3584–3592CrossRef Anne Marz TH, Dana Cialla, Michael Schmitta (2011) Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy—concepts and applications. Lab Chip 11:3584–3592CrossRef
go back to reference Ashok PC, Praveen BB, Dholakia K (2013) Optofluidic Raman sensor for simultaneous detection of the toxicity and quality of alcoholic beverages. J Raman Spectrosc 44:795–797CrossRef Ashok PC, Praveen BB, Dholakia K (2013) Optofluidic Raman sensor for simultaneous detection of the toxicity and quality of alcoholic beverages. J Raman Spectrosc 44:795–797CrossRef
go back to reference Ashok PC, Singh GP, Tan KM, Dholakia K (2010) Fiber probe based microfluidic raman spectroscopy. Opt Express 8:7642–7649CrossRef Ashok PC, Singh GP, Tan KM, Dholakia K (2010) Fiber probe based microfluidic raman spectroscopy. Opt Express 8:7642–7649CrossRef
go back to reference Chen MC, Lord RC (1976) Laser-excited Raman spectroscopy of biomolecules. VIII. Conformational study of bovine serum albumin. J Am Chem Soc 98:990–992CrossRef Chen MC, Lord RC (1976) Laser-excited Raman spectroscopy of biomolecules. VIII. Conformational study of bovine serum albumin. J Am Chem Soc 98:990–992CrossRef
go back to reference Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J Phys Chem C 114:93–100CrossRef Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J Phys Chem C 114:93–100CrossRef
go back to reference Chen J, Su H, You X, Gao J, Lau WM, Zhang D (2014) 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation. Mater Res Bull 49:560–565CrossRef Chen J, Su H, You X, Gao J, Lau WM, Zhang D (2014) 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation. Mater Res Bull 49:560–565CrossRef
go back to reference Cho SH, Godin J, Lo YH (2009) Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photonics Technol Lett 21:1057–1059CrossRef Cho SH, Godin J, Lo YH (2009) Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photonics Technol Lett 21:1057–1059CrossRef
go back to reference Cui Q, Xia B, Mitzscherling S, Masic A, Li L, Bargheer M, Möhwald H (2015) Preparation of gold nanostars and their study in selective catalytic reactions. Colloids Surf A 465:20–25CrossRef Cui Q, Xia B, Mitzscherling S, Masic A, Li L, Bargheer M, Möhwald H (2015) Preparation of gold nanostars and their study in selective catalytic reactions. Colloids Surf A 465:20–25CrossRef
go back to reference Datta A, Eom IY, Dhar A (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795CrossRef Datta A, Eom IY, Dhar A (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795CrossRef
go back to reference Ding HP, Xin GQ, Chen KC, Zhang M, Liu Q, Hao J, Liu HG (2010) Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition. Colloids Surf A Physicochem Eng Asp 353:166–171CrossRef Ding HP, Xin GQ, Chen KC, Zhang M, Liu Q, Hao J, Liu HG (2010) Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition. Colloids Surf A Physicochem Eng Asp 353:166–171CrossRef
go back to reference Dochow S, Becker M, Spittel R et al (2013) Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles. Lab Chip 13:1109–1113CrossRef Dochow S, Becker M, Spittel R et al (2013) Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles. Lab Chip 13:1109–1113CrossRef
go back to reference Eftekhari F, Irizar J, Hulbert L, Helmy AS (2011) A comparative study of Raman enhancement in capillaries. J Appl Phys 109:113104CrossRef Eftekhari F, Irizar J, Hulbert L, Helmy AS (2011) A comparative study of Raman enhancement in capillaries. J Appl Phys 109:113104CrossRef
go back to reference Eftekhari F, Lee A, Kumacheva E, Helmy AS (2012) Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS. Opt Lett 37:680–682CrossRef Eftekhari F, Lee A, Kumacheva E, Helmy AS (2012) Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS. Opt Lett 37:680–682CrossRef
go back to reference Fan M, Andrade GFS, Brolod AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25CrossRef Fan M, Andrade GFS, Brolod AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25CrossRef
go back to reference Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRef Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRef
go back to reference Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRef Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRef
go back to reference Fu C, Wang Y, Chen G (2015) Aptamer-based surface-enhanced Raman scattering microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87:9555–9558CrossRef Fu C, Wang Y, Chen G (2015) Aptamer-based surface-enhanced Raman scattering microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87:9555–9558CrossRef
go back to reference Han Y, Oo MKK, Sukhishvili S, Du H (2010) Photonic crystal fiber as an optofluidic platform for surface enhanced Raman scattering. Proc SPIE 7839:783908CrossRef Han Y, Oo MKK, Sukhishvili S, Du H (2010) Photonic crystal fiber as an optofluidic platform for surface enhanced Raman scattering. Proc SPIE 7839:783908CrossRef
go back to reference Hoonejani MR, Pallaoro A, Braun GB (2015) Quantitative multiplexed simulated-cell identification by SERS in microfluidic devices. Nanoscale 7:16834–16840CrossRef Hoonejani MR, Pallaoro A, Braun GB (2015) Quantitative multiplexed simulated-cell identification by SERS in microfluidic devices. Nanoscale 7:16834–16840CrossRef
go back to reference Iosin M, Toderas F, Baldeck PL, Astilean S (2009) Study of protein–gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct 196:924–926 Iosin M, Toderas F, Baldeck PL, Astilean S (2009) Study of protein–gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct 196:924–926
go back to reference Jernshøj KD, Hassing S (2010) Survival of molecular information under surfaced-enhanced resonance Raman (SERRS) conditions. J Raman Spectrosc 41:727–738 Jernshøj KD, Hassing S (2010) Survival of molecular information under surfaced-enhanced resonance Raman (SERRS) conditions. J Raman Spectrosc 41:727–738
go back to reference Jia Y, Jiang J, Ma X, Li Y, Huang H, Cai K, Cai S, Wu Y (2008) PDMS microchannel fabrication technique based on microwire-molding. Chin Sci Bull 53:3928–3936CrossRef Jia Y, Jiang J, Ma X, Li Y, Huang H, Cai K, Cai S, Wu Y (2008) PDMS microchannel fabrication technique based on microwire-molding. Chin Sci Bull 53:3928–3936CrossRef
go back to reference Khurana P, Thatai S, Sa Prasad, Soni S, Kumar D (2016) Agcore–Aushell bimetallic nanocomposites: Gold shell thickness dependent study for SERS enhancement. Microchem J 1248:19–823 Khurana P, Thatai S, Sa Prasad, Soni S, Kumar D (2016) Agcore–Aushell bimetallic nanocomposites: Gold shell thickness dependent study for SERS enhancement. Microchem J 1248:19–823
go back to reference Lee H, Xu L, Koh D, Nyayapathi N, Oh KW (2014) Various on-chip sensors with microfluidics for biological applications. Sensors 14:17008–17036CrossRef Lee H, Xu L, Koh D, Nyayapathi N, Oh KW (2014) Various on-chip sensors with microfluidics for biological applications. Sensors 14:17008–17036CrossRef
go back to reference Li QL, Li BW, Wang YQ (2013) Surface-enhanced Raman scattering microfluidic sensor. Rsc Adv 3:13015–13026CrossRef Li QL, Li BW, Wang YQ (2013) Surface-enhanced Raman scattering microfluidic sensor. Rsc Adv 3:13015–13026CrossRef
go back to reference Lin CC, Chang CW (2014) AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule. Biosens Bioelectron 51:297–303CrossRef Lin CC, Chang CW (2014) AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule. Biosens Bioelectron 51:297–303CrossRef
go back to reference Lin J, Zhang Y, Qian J, He S (2014) A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance. Laser Photonics Rev 8:610–616CrossRef Lin J, Zhang Y, Qian J, He S (2014) A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance. Laser Photonics Rev 8:610–616CrossRef
go back to reference Manor R, Datta A, Ahmad I, Holtz M, Gangopadhyay S, Dallas T (2003) Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF. IEEE Sens J 3:687–692CrossRef Manor R, Datta A, Ahmad I, Holtz M, Gangopadhyay S, Dallas T (2003) Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF. IEEE Sens J 3:687–692CrossRef
go back to reference Mao H, Wu W, She D, Sun G, Lv P, Xu J (2014) Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique. Small 10:127–134CrossRef Mao H, Wu W, She D, Sun G, Lv P, Xu J (2014) Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique. Small 10:127–134CrossRef
go back to reference Marcuse D (1981) Principles of optical fiber measeurements. Academic, New York Marcuse D (1981) Principles of optical fiber measeurements. Academic, New York
go back to reference Measor P, Seballos L, Yin D, Zhang JZ (2007) On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107CrossRef Measor P, Seballos L, Yin D, Zhang JZ (2007) On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107CrossRef
go back to reference Novara C, Lamberti A, Chiadò A, Virga A, Rivolo P, Geobaldo F, Giorgis F (2016) Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Adv 6:21865–21870CrossRef Novara C, Lamberti A, Chiadò A, Virga A, Rivolo P, Geobaldo F, Giorgis F (2016) Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Adv 6:21865–21870CrossRef
go back to reference Peter D, Ms Belz, Klein KF, Grattan KTV, Frankea H (1998) Physical analysis of teflon coated capillary waveguides. Sens Actuators, B 51:278–284CrossRef Peter D, Ms Belz, Klein KF, Grattan KTV, Frankea H (1998) Physical analysis of teflon coated capillary waveguides. Sens Actuators, B 51:278–284CrossRef
go back to reference Qi D, Berger AJ (2004) Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers. Appl Spectrosc 58:1165–1171CrossRef Qi D, Berger AJ (2004) Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers. Appl Spectrosc 58:1165–1171CrossRef
go back to reference Synytsya A, Alexa P, de Boer J, Loewe M, Moosburger M, Wurkner M, Volka K (2007) Raman spectroscopic study of serum albumins: an effect of proton- and γ-irradiation. J Raman Spectrosc 38:1646–1655CrossRef Synytsya A, Alexa P, de Boer J, Loewe M, Moosburger M, Wurkner M, Volka K (2007) Raman spectroscopic study of serum albumins: an effect of proton- and γ-irradiation. J Raman Spectrosc 38:1646–1655CrossRef
go back to reference Talian I, Huebner J (2013) Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel. J Raman Spectrosc 44:536–539CrossRef Talian I, Huebner J (2013) Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel. J Raman Spectrosc 44:536–539CrossRef
go back to reference Tian Y, Zhang L, Zuo J, Li Z, Gao S, Lu G (2007) Raman sensitivity enhancement for aqueous absorbing sample using Teflon-AF 2400 liquid core optical fibre cell. Anal Chim Acta 581:154–158CrossRef Tian Y, Zhang L, Zuo J, Li Z, Gao S, Lu G (2007) Raman sensitivity enhancement for aqueous absorbing sample using Teflon-AF 2400 liquid core optical fibre cell. Anal Chim Acta 581:154–158CrossRef
go back to reference Wang S, Li J, Suo J, Luo T (2010) Surface modification of porous poly (tetrafluoraethylene) film by a simple chemical oxidation treatment. Appl Surf Sci 256:2293–2298CrossRef Wang S, Li J, Suo J, Luo T (2010) Surface modification of porous poly (tetrafluoraethylene) film by a simple chemical oxidation treatment. Appl Surf Sci 256:2293–2298CrossRef
go back to reference Wang C, Xu Y, Zhao H, Gang C, Lai C, Liao X, Wang R (2015) Detection and analysis of SERS effect of nano gold by self-assembly chemical plating composite method. Appl Surf Sci 353:750–756CrossRef Wang C, Xu Y, Zhao H, Gang C, Lai C, Liao X, Wang R (2015) Detection and analysis of SERS effect of nano gold by self-assembly chemical plating composite method. Appl Surf Sci 353:750–756CrossRef
go back to reference Wu CW, Gong GC (2008) Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels. IEEE Sens J 8:465–469CrossRef Wu CW, Gong GC (2008) Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels. IEEE Sens J 8:465–469CrossRef
go back to reference Yang X, Shi C, Wheeler D et al (2010) High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface enhanced Raman scattering. J Opt Soc Am A 27:977–984CrossRef Yang X, Shi C, Wheeler D et al (2010) High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface enhanced Raman scattering. J Opt Soc Am A 27:977–984CrossRef
Metadata
Title
Fabrication and effect study of microfluidic SERS chip with integrated surface liquid core optical waveguide modified with nano gold
Authors
Chunyan Wang
Yi Xu
Rong Wang
Huazhou Zhao
Songtao Xiang
Li Chen
Xueqiang Qi
Publication date
26-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3138-2

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue