Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2019

18-06-2019

Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid

Authors: Y. Sasikumar, A. Madhan Kumar, R. Suresh Babu, P. Dhaiveegan, N. Al-Aqeeli, Ana L. F. de Barros

Published in: Journal of Materials Engineering and Performance | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A biocompatible dicalcium phosphate dihydrate (DCPD) brushite coating of flake-like crystals was developed on AZ91D and AZ31 magnesium (Mg) surfaces to control and slow down the rapid degradation rate of the substrates. The electrochemical behavior of the DCPD-coated substrates was examined in a simulated body fluid (SBF) with uncoated substrates as the control. Fabrication of the coating was achieved via chemical immersion technique by modifying the surfaces with Ca(NO3)2·4H2O and KH2PO4 in addition to heat treatment. The morphology of the DCPD coating is uniform and dense with a flake-like crystal structure. After in vitro tests, the DCPD coating would have exhibited excellent corrosion resistance with more biomineralization of the active calcium phosphate (CaP). Moreover, the DCPD coating induced CaP formation after immersion in the SBF, indicating excellent bioactivity upon increasing the coating. Hence, the two-step chemical treatment enhances the bioactivity of DCPD coatings on Mg alloys, making them better implant materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 304, p 484–498CrossRef X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 304, p 484–498CrossRef
2.
go back to reference A. Lambotte, L’utilisation du Magnesium Comme Materiel Perdu Dans L’osteosynthese, Bull. Mem. Soc. Nat. Chir., 1932, 28, p 1325–1334 A. Lambotte, L’utilisation du Magnesium Comme Materiel Perdu Dans L’osteosynthese, Bull. Mem. Soc. Nat. Chir., 1932, 28, p 1325–1334
3.
go back to reference G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858CrossRef G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858CrossRef
4.
go back to reference C. Ying-liang, Q. Ting-wei, W. Hui-min, and Z. Zhao, Comparison of Corrosion Behaviors of AZ31, AZ91, AM60 and ZK60 Magnesium Alloys, Trans. Nonferrous Met. Soc. China, 2009, 19, p 517–524CrossRef C. Ying-liang, Q. Ting-wei, W. Hui-min, and Z. Zhao, Comparison of Corrosion Behaviors of AZ31, AZ91, AM60 and ZK60 Magnesium Alloys, Trans. Nonferrous Met. Soc. China, 2009, 19, p 517–524CrossRef
5.
go back to reference A. Abdal-hay, N.A.M. Barakat, and J.K. Lim, Hydroxyapatite-doped Poly(Lactic Acid) Porous Film Coating for Enhanced Bioactivity and Corrosion Behavior of AZ31Mg Alloy for Orthopedic Applications, Ceram. Int., 2013, 39, p 183–195CrossRef A. Abdal-hay, N.A.M. Barakat, and J.K. Lim, Hydroxyapatite-doped Poly(Lactic Acid) Porous Film Coating for Enhanced Bioactivity and Corrosion Behavior of AZ31Mg Alloy for Orthopedic Applications, Ceram. Int., 2013, 39, p 183–195CrossRef
6.
go back to reference D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2012, 38, p 4607–4615CrossRef D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2012, 38, p 4607–4615CrossRef
7.
go back to reference S.V. Dorozhkin, Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys, Acta Biomater., 2014, 10, p 2919–2934CrossRef S.V. Dorozhkin, Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys, Acta Biomater., 2014, 10, p 2919–2934CrossRef
8.
go back to reference S. Shadanbaz and G.J. Dias, Calcium Phosphate Coatings on Magnesium Alloys for Biomedical Applications: A Review, Acta Biomater., 2012, 8, p 20–30CrossRef S. Shadanbaz and G.J. Dias, Calcium Phosphate Coatings on Magnesium Alloys for Biomedical Applications: A Review, Acta Biomater., 2012, 8, p 20–30CrossRef
9.
go back to reference R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomater., 2014, 10, p 557–579CrossRef R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomater., 2014, 10, p 557–579CrossRef
10.
go back to reference S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng. Rep., 2009, 66, p 1–70CrossRef S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng. Rep., 2009, 66, p 1–70CrossRef
11.
go back to reference Y. Chen and X. Miao, Effect of Fluorine Addition on the Corrosion Resistance of Hydroxyapatite Ceramics, Ceram. Int., 2004, 30, p 1961–1965CrossRef Y. Chen and X. Miao, Effect of Fluorine Addition on the Corrosion Resistance of Hydroxyapatite Ceramics, Ceram. Int., 2004, 30, p 1961–1965CrossRef
12.
go back to reference M. Pan, X. Kong, Y. Cai, and J. Yao, Hydroxyapatite Coating on the Titanium Substrate Modulated by a Recombinant Collagen-Like Protein, Mater. Chem. Phys., 2011, 126, p 811–817CrossRef M. Pan, X. Kong, Y. Cai, and J. Yao, Hydroxyapatite Coating on the Titanium Substrate Modulated by a Recombinant Collagen-Like Protein, Mater. Chem. Phys., 2011, 126, p 811–817CrossRef
13.
go back to reference J.E. Gray Munro and M. Strong, The Mechanism of Deposition of Calcium Phosphate Coatings from Solution onto Magnesium Alloy AZ31, J. Biomed. Mater. Res. A, 2009, 90, p 339–350CrossRef J.E. Gray Munro and M. Strong, The Mechanism of Deposition of Calcium Phosphate Coatings from Solution onto Magnesium Alloy AZ31, J. Biomed. Mater. Res. A, 2009, 90, p 339–350CrossRef
14.
go back to reference D. Gopi, P.R. Bhalaji, S. Ramya, and L. Kavitha, Evaluation of Biodegradability of Surface Treated AZ91 Magnesium Alloy in SBF Solution, J. Ind. Eng. Chem., 2015, 23, p 218–227CrossRef D. Gopi, P.R. Bhalaji, S. Ramya, and L. Kavitha, Evaluation of Biodegradability of Surface Treated AZ91 Magnesium Alloy in SBF Solution, J. Ind. Eng. Chem., 2015, 23, p 218–227CrossRef
15.
go back to reference M. Tomozawa and S. Hiromoto, Microstructure of Hydroxyapatite- and Octacalcium Phosphate-Coatings Formed on Magnesium by a Hydrothermal Treatment at Various pH Values, Acta Mater., 2011, 59, p 355–363CrossRef M. Tomozawa and S. Hiromoto, Microstructure of Hydroxyapatite- and Octacalcium Phosphate-Coatings Formed on Magnesium by a Hydrothermal Treatment at Various pH Values, Acta Mater., 2011, 59, p 355–363CrossRef
16.
go back to reference J. Liang, B.G. Guo, J. Tian, H.W. Liu, J.F. Zhou, W.M. Liu, and T. Xu, Effects of NaAlO2 on Structure and Corrosion Resistance of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Phosphate-KOH Electrolyte, Surf. Coat. Technol., 2005, 199, p 121–126CrossRef J. Liang, B.G. Guo, J. Tian, H.W. Liu, J.F. Zhou, W.M. Liu, and T. Xu, Effects of NaAlO2 on Structure and Corrosion Resistance of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Phosphate-KOH Electrolyte, Surf. Coat. Technol., 2005, 199, p 121–126CrossRef
17.
go back to reference C. Wen, S. Guan, L. Peng, C. Ren, X. Wang, and Z. Hu, Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications, Appl. Surf. Sci., 2009, 255, p 6433–6438CrossRef C. Wen, S. Guan, L. Peng, C. Ren, X. Wang, and Z. Hu, Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications, Appl. Surf. Sci., 2009, 255, p 6433–6438CrossRef
18.
go back to reference L. Li, J. Gao, and Y. Wang, Evaluation of Cyto-toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid, Surf. Coat. Technol., 2004, 185, p 92–98CrossRef L. Li, J. Gao, and Y. Wang, Evaluation of Cyto-toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid, Surf. Coat. Technol., 2004, 185, p 92–98CrossRef
19.
go back to reference Y. Zhu, G. Wu, Y. Hong Zhang, and Q. Zhao, Growth and Characterization of Mg(OH)2 Film on Magnesium Alloy AZ31, Appl. Surf. Sci., 2011, 257, p 6129–6137CrossRef Y. Zhu, G. Wu, Y. Hong Zhang, and Q. Zhao, Growth and Characterization of Mg(OH)2 Film on Magnesium Alloy AZ31, Appl. Surf. Sci., 2011, 257, p 6129–6137CrossRef
20.
go back to reference C. Lorenz, J.G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry, and S. Virtanen, Effect of Surface Pre-treatments on Biocompatibility of Magnesium, Acta Biomater., 2009, 5, p 2783–2789CrossRef C. Lorenz, J.G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry, and S. Virtanen, Effect of Surface Pre-treatments on Biocompatibility of Magnesium, Acta Biomater., 2009, 5, p 2783–2789CrossRef
21.
go back to reference H. Zhao, S. Cai, S. Niu, R. Zhang, X. Wu, G. Xu, and Z. Ding, The Influence of Alkali Pretreatments of AZ31 Magnesium Alloys on Bonding of Bioglass-Ceramic Coatings and Corrosion Resistance for Biomedical Applications, Ceram. Int., 2015, 41, p 4590–4600CrossRef H. Zhao, S. Cai, S. Niu, R. Zhang, X. Wu, G. Xu, and Z. Ding, The Influence of Alkali Pretreatments of AZ31 Magnesium Alloys on Bonding of Bioglass-Ceramic Coatings and Corrosion Resistance for Biomedical Applications, Ceram. Int., 2015, 41, p 4590–4600CrossRef
22.
go back to reference Y. Su, Y. Lu, Y. Su, J. Hu, J. Lian, and G. Li, Enhancing the Corrosion Resistance and Surface Bioactivity of a Calcium-Phosphate Coating on a Biodegradable AZ60 Magnesium Alloy via a Simple Fluorine Post-treatment Method, RSC Adv., 2015, 5, p 56001–56010CrossRef Y. Su, Y. Lu, Y. Su, J. Hu, J. Lian, and G. Li, Enhancing the Corrosion Resistance and Surface Bioactivity of a Calcium-Phosphate Coating on a Biodegradable AZ60 Magnesium Alloy via a Simple Fluorine Post-treatment Method, RSC Adv., 2015, 5, p 56001–56010CrossRef
23.
go back to reference L. Zhang, S. Li, H. Li, and L. Pei, Bioactive Surface Modification of Carbon/Carbon Composites with Multilayer SiC-SiC Nanowire-Si Doped Hydroxyapatite Coating, J. Alloys Compd., 2018, 740, p 109–117CrossRef L. Zhang, S. Li, H. Li, and L. Pei, Bioactive Surface Modification of Carbon/Carbon Composites with Multilayer SiC-SiC Nanowire-Si Doped Hydroxyapatite Coating, J. Alloys Compd., 2018, 740, p 109–117CrossRef
24.
go back to reference X. Zhao, X. Wang, H. Xin, L. Zhang, J. Yang, and G. Jiang, Controllable Preparation of SiC Coating Protecting Carbon Fiber from Oxidation Damage During Sintering Process and SiC Coated Carbon Fiber Reinforced Hydroxyapatite Composites, Appl. Surf. Sci., 2018, 450, p 265–273CrossRef X. Zhao, X. Wang, H. Xin, L. Zhang, J. Yang, and G. Jiang, Controllable Preparation of SiC Coating Protecting Carbon Fiber from Oxidation Damage During Sintering Process and SiC Coated Carbon Fiber Reinforced Hydroxyapatite Composites, Appl. Surf. Sci., 2018, 450, p 265–273CrossRef
25.
go back to reference L. Zhang, L. Pei, H. Li, S. Li, S. Liu, and Y. Guo, Preparation and Characterization of Na and F Co-Doped Hydroxyapatite Coating Reinforced by Carbon Nanotubes and SiC Nanoparticles, Mater. Lett., 2018, 218, p 161–164CrossRef L. Zhang, L. Pei, H. Li, S. Li, S. Liu, and Y. Guo, Preparation and Characterization of Na and F Co-Doped Hydroxyapatite Coating Reinforced by Carbon Nanotubes and SiC Nanoparticles, Mater. Lett., 2018, 218, p 161–164CrossRef
26.
go back to reference Z. Leilei, L. Hejun, L. Kezhi, Z. Yulei, L. Shoujie, G. Qian, and L. Shaoxian, Micro-oxidation Treatment to Improve Bonding Strength of Sr and Na Co-substituted Hydroxyapatite Coatings for Carbon/Carbon Composites, Appl. Surf. Sci., 2016, 378, p 136–141CrossRef Z. Leilei, L. Hejun, L. Kezhi, Z. Yulei, L. Shoujie, G. Qian, and L. Shaoxian, Micro-oxidation Treatment to Improve Bonding Strength of Sr and Na Co-substituted Hydroxyapatite Coatings for Carbon/Carbon Composites, Appl. Surf. Sci., 2016, 378, p 136–141CrossRef
27.
go back to reference S. Liu, H. Li, L. Zhang, L. Feng, and P. Yao, Strontium and Magnesium Substituted Dicalcium Phosphate Dehydrate Coating for Carbon/Carbon Composites Prepared by Pulsed Electrodeposition, Appl. Surf. Sci., 2015, 359, p 288–292CrossRef S. Liu, H. Li, L. Zhang, L. Feng, and P. Yao, Strontium and Magnesium Substituted Dicalcium Phosphate Dehydrate Coating for Carbon/Carbon Composites Prepared by Pulsed Electrodeposition, Appl. Surf. Sci., 2015, 359, p 288–292CrossRef
28.
go back to reference Z. Leilei, L. Hejun, L. Kezhi, Z. Shouyang, F. Qiangang, Z. Yulei, L. Jinhua, and L. Wei, Preparation and Characterization of Carbon/SiC Nanowire/Na-Doped Carbonated Hydroxyapatite Multilayer Coating for Carbon/Carbon Composites, Appl. Surf. Sci., 2014, 313, p 85–92CrossRef Z. Leilei, L. Hejun, L. Kezhi, Z. Shouyang, F. Qiangang, Z. Yulei, L. Jinhua, and L. Wei, Preparation and Characterization of Carbon/SiC Nanowire/Na-Doped Carbonated Hydroxyapatite Multilayer Coating for Carbon/Carbon Composites, Appl. Surf. Sci., 2014, 313, p 85–92CrossRef
29.
go back to reference L. Zhang, L. Pei, H. Li, and F. Zhu, Design and Fabrication of Pyrolytic Carbon-SiC-Fluoridated Hydroxyapatite-Hydroxyapatite Multilayered Coating on Carbon Fibers, Appl. Surf. Sci., 2019, 473, p 571–577CrossRef L. Zhang, L. Pei, H. Li, and F. Zhu, Design and Fabrication of Pyrolytic Carbon-SiC-Fluoridated Hydroxyapatite-Hydroxyapatite Multilayered Coating on Carbon Fibers, Appl. Surf. Sci., 2019, 473, p 571–577CrossRef
30.
go back to reference Y. Sasikumar and N. Rajendran, Influence of Surface Modification on the Apatite Formation and Corrosion Behavior of Ti and Ti-15Mo Alloy for Biomedical Applications, Mater. Chem. Phys., 2013, 138, p 114–123CrossRef Y. Sasikumar and N. Rajendran, Influence of Surface Modification on the Apatite Formation and Corrosion Behavior of Ti and Ti-15Mo Alloy for Biomedical Applications, Mater. Chem. Phys., 2013, 138, p 114–123CrossRef
31.
go back to reference T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27, p 2907–2915CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27, p 2907–2915CrossRef
32.
go back to reference Y. Sasikumar, M.M. Solomon, L.O. Olasunkanmi, and E.E. Ebenso, Effect of Surface Treatment on the Bioactivity and Electrochemical Behavior of Magnesium Alloys in Simulated Body Fluid, Mater. Corros., 2017, 68, p 776–790CrossRef Y. Sasikumar, M.M. Solomon, L.O. Olasunkanmi, and E.E. Ebenso, Effect of Surface Treatment on the Bioactivity and Electrochemical Behavior of Magnesium Alloys in Simulated Body Fluid, Mater. Corros., 2017, 68, p 776–790CrossRef
33.
go back to reference Y. Wang, M. Wei, and J. Gao, Improve Corrosion Resistance of Magnesium in Simulated Body Fluid by Dicalcium Phosphate Dihydrate Coating, Mater. Sci. Eng. C, 2009, 29, p 1311–1316CrossRef Y. Wang, M. Wei, and J. Gao, Improve Corrosion Resistance of Magnesium in Simulated Body Fluid by Dicalcium Phosphate Dihydrate Coating, Mater. Sci. Eng. C, 2009, 29, p 1311–1316CrossRef
34.
go back to reference S.T. Jiang, J. Zhang, S.Z. Shun, and M.F. Chen, The Formation of FHA Coating on Biodegradable Mg-Zn-Zr Alloy using a Two-Step Chemical Treatment Method, Appl. Surf. Sci., 2016, 388, p 424–430CrossRef S.T. Jiang, J. Zhang, S.Z. Shun, and M.F. Chen, The Formation of FHA Coating on Biodegradable Mg-Zn-Zr Alloy using a Two-Step Chemical Treatment Method, Appl. Surf. Sci., 2016, 388, p 424–430CrossRef
35.
go back to reference M. Jamesh, S. Kumar, and T.S.N. Sankara Narayanan, Electrodeposition of Hydroxyapatite Coating on Magnesium for Biomedical Applications, J. Coat. Technol. Res., 2012, 9, p 495–502CrossRef M. Jamesh, S. Kumar, and T.S.N. Sankara Narayanan, Electrodeposition of Hydroxyapatite Coating on Magnesium for Biomedical Applications, J. Coat. Technol. Res., 2012, 9, p 495–502CrossRef
36.
go back to reference Y. Su, G. Li, and J.A. Lian, Chemical Conversion Hydroxyapatite Coating on AZ60 Magnesium Alloy and Its Electrochemical Corrosion Behaviour, Int. J. Electrochem. Sci., 2012, 7, p 11497–11511 Y. Su, G. Li, and J.A. Lian, Chemical Conversion Hydroxyapatite Coating on AZ60 Magnesium Alloy and Its Electrochemical Corrosion Behaviour, Int. J. Electrochem. Sci., 2012, 7, p 11497–11511
37.
go back to reference B. Sridevi, J. Gérrard Eddy, and F. Derek, Growth of Flower-Like Brushite Structures on Magnesium Substrates and Their Subsequent Low Temperature Transformation to Hydroxyapatite, Am. J. Biomed. Eng., 2014, 4, p 79–87 B. Sridevi, J. Gérrard Eddy, and F. Derek, Growth of Flower-Like Brushite Structures on Magnesium Substrates and Their Subsequent Low Temperature Transformation to Hydroxyapatite, Am. J. Biomed. Eng., 2014, 4, p 79–87
38.
go back to reference J. Xu, I.S. Butler, and F.R.G. Denis, FT-Raman and High-Pressure Infrared Spectroscopic Studies of Dicalcium Phosphate Dihydrate (CaHPO4 2H2O) and Anhydrous Dicalcium Phosphate (CaHPO4), Spectrochim. Acta A, 1999, 55, p 2801–2809CrossRef J. Xu, I.S. Butler, and F.R.G. Denis, FT-Raman and High-Pressure Infrared Spectroscopic Studies of Dicalcium Phosphate Dihydrate (CaHPO4 2H2O) and Anhydrous Dicalcium Phosphate (CaHPO4), Spectrochim. Acta A, 1999, 55, p 2801–2809CrossRef
39.
go back to reference L. Xu, E. Zhang, and K. Yang, Phosphating Treatment and Corrosion Properties of Mg-Mn-Zn Alloy for Biomedical Application, J. Mater. Sci. Mater. Med., 2009, 20, p 859–867CrossRef L. Xu, E. Zhang, and K. Yang, Phosphating Treatment and Corrosion Properties of Mg-Mn-Zn Alloy for Biomedical Application, J. Mater. Sci. Mater. Med., 2009, 20, p 859–867CrossRef
40.
go back to reference L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, In Vitro and In Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy, Biomaterials, 2008, 30, p 1512–1523CrossRef L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, In Vitro and In Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy, Biomaterials, 2008, 30, p 1512–1523CrossRef
41.
go back to reference A. Yanovska, V. Kuznetsov, A. Stanislavov, S. Danilchenko, and L. Sukhodub, Calcium–Phosphate Coatings Obtained Biomimetically on Magnesium Substrates Under Low Magnetic Field, Appl. Surf. Sci., 2012, 258, p 8577–8584CrossRef A. Yanovska, V. Kuznetsov, A. Stanislavov, S. Danilchenko, and L. Sukhodub, Calcium–Phosphate Coatings Obtained Biomimetically on Magnesium Substrates Under Low Magnetic Field, Appl. Surf. Sci., 2012, 258, p 8577–8584CrossRef
42.
43.
go back to reference S.V. Dorozhkin, A Review on the Dissolution Models of Calcium Apatites, Prog. Cryst. Growth Charact., 2002, 44, p 45–61CrossRef S.V. Dorozhkin, A Review on the Dissolution Models of Calcium Apatites, Prog. Cryst. Growth Charact., 2002, 44, p 45–61CrossRef
44.
go back to reference T.M. Mukhametkaliyev, M.A. Surmeneva, A. Vladescu, C.M. Cotruta, M. Braic, M. Dinu, M.D. Vranceanu, I. Pana, M. Muellere, and R.A. Surmenev, A Biodegradable AZ91 Magnesium Alloy Coated with a Thin Nanostructured Hydroxyapatite for Improving the Corrosion Resistance, Mater. Sci. Eng. C, 2017, 75, p 95–103CrossRef T.M. Mukhametkaliyev, M.A. Surmeneva, A. Vladescu, C.M. Cotruta, M. Braic, M. Dinu, M.D. Vranceanu, I. Pana, M. Muellere, and R.A. Surmenev, A Biodegradable AZ91 Magnesium Alloy Coated with a Thin Nanostructured Hydroxyapatite for Improving the Corrosion Resistance, Mater. Sci. Eng. C, 2017, 75, p 95–103CrossRef
45.
go back to reference A.M. Fekry and M.A. Ameer, Electrochemistry and Impedance Studies on Titanium and Magnesium Alloys in Ringer’s Solution, Int. J. Electrochem. Sci., 2011, 6, p 1342–1354 A.M. Fekry and M.A. Ameer, Electrochemistry and Impedance Studies on Titanium and Magnesium Alloys in Ringer’s Solution, Int. J. Electrochem. Sci., 2011, 6, p 1342–1354
46.
go back to reference C.J. Pan, L. Pang, Y. Hou, Y.B. Lin, T. Gong, T. Liu, W. Ye, and H.Y. Ding, Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments, Appl. Sci., 2017, 7, p 33CrossRef C.J. Pan, L. Pang, Y. Hou, Y.B. Lin, T. Gong, T. Liu, W. Ye, and H.Y. Ding, Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments, Appl. Sci., 2017, 7, p 33CrossRef
47.
go back to reference Y.J. Zhang, C.W. Yan, F.H. Wang, and W.F. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47, p 2816–2831CrossRef Y.J. Zhang, C.W. Yan, F.H. Wang, and W.F. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47, p 2816–2831CrossRef
48.
go back to reference R.G. Guan, I. Johnson, T. Cui, T. Zhao, Z.Y. Zhao, X. Li, and H. Liu, Electrodeposition of Hydroxyapatite Coating on Mg-4.0Zn-1.0Ca-0.6Zr Alloy and In Vitro Evaluation of Degradation, Hemolysis, and Cytotoxicity, J. Biomed. Mater. Res. A, 2012, 100A, p 999–1015CrossRef R.G. Guan, I. Johnson, T. Cui, T. Zhao, Z.Y. Zhao, X. Li, and H. Liu, Electrodeposition of Hydroxyapatite Coating on Mg-4.0Zn-1.0Ca-0.6Zr Alloy and In Vitro Evaluation of Degradation, Hemolysis, and Cytotoxicity, J. Biomed. Mater. Res. A, 2012, 100A, p 999–1015CrossRef
49.
go back to reference M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986 M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986
50.
go back to reference E. Stansbury and R. Buchanan, Fundamentals of Electrochemical Corrosion, 1st ed., ASM International, Materials Park, 2000 E. Stansbury and R. Buchanan, Fundamentals of Electrochemical Corrosion, 1st ed., ASM International, Materials Park, 2000
51.
go back to reference G.L. Song, A. Atrens, D. St. John, X. Wu, and J. Nairn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39, p 1981–2004CrossRef G.L. Song, A. Atrens, D. St. John, X. Wu, and J. Nairn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39, p 1981–2004CrossRef
52.
go back to reference Y.R. Chu and C.S. Lin, Citrate Gel Conversion Coating on AZ31 Magnesium Alloys, Corros. Sci., 2014, 87, p 288–296CrossRef Y.R. Chu and C.S. Lin, Citrate Gel Conversion Coating on AZ31 Magnesium Alloys, Corros. Sci., 2014, 87, p 288–296CrossRef
53.
go back to reference M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.L. Song, and A. Atrens, An Exploratory Study of the Corrosion of Mg Alloys During Interrupted Salt Spray Testing, Corros. Sci., 2009, 51, p 1277–1292CrossRef M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.L. Song, and A. Atrens, An Exploratory Study of the Corrosion of Mg Alloys During Interrupted Salt Spray Testing, Corros. Sci., 2009, 51, p 1277–1292CrossRef
54.
go back to reference T.R. Thomaz, C.R. Weber, T. Pelegrini, Jr., L.F.P. Dick, and G. Knörnschild, The Negative Difference Effect of Magnesium and of the AZ91 Alloy in Chloride and Stannate-Containing Solutions, Corros. Sci., 2010, 52, p 2235–2243CrossRef T.R. Thomaz, C.R. Weber, T. Pelegrini, Jr., L.F.P. Dick, and G. Knörnschild, The Negative Difference Effect of Magnesium and of the AZ91 Alloy in Chloride and Stannate-Containing Solutions, Corros. Sci., 2010, 52, p 2235–2243CrossRef
55.
go back to reference A. Madhan Kumar, S. Fida Hassan, A.A. Sorour, M. Paramsothy, and M. Gupta, Electrochemical Corrosion and In Vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid, J. Mater. Eng. Perform., 2018, 27, p 3419–3428CrossRef A. Madhan Kumar, S. Fida Hassan, A.A. Sorour, M. Paramsothy, and M. Gupta, Electrochemical Corrosion and In Vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid, J. Mater. Eng. Perform., 2018, 27, p 3419–3428CrossRef
56.
go back to reference M. Kumar, H. Dasarathy, and C. Riley, Electrodeposition of Brushite Coatings and Their Transformation to Hydroxyapatite in Aqueous Solutions, J. Biomed. Mater. Res. A, 1999, 45, p 302–310CrossRef M. Kumar, H. Dasarathy, and C. Riley, Electrodeposition of Brushite Coatings and Their Transformation to Hydroxyapatite in Aqueous Solutions, J. Biomed. Mater. Res. A, 1999, 45, p 302–310CrossRef
57.
go back to reference C. Chen, S. Qiu, S. Qin, G. Yan, H. Zhao, and L. Wang, Anticorrosion Performance of Epoxy Coating Containing Reactive Poly(o-phenylenediamine) Nanoparticles, Int. J. Electrochem. Sci., 2017, 12, p 3417–3431CrossRef C. Chen, S. Qiu, S. Qin, G. Yan, H. Zhao, and L. Wang, Anticorrosion Performance of Epoxy Coating Containing Reactive Poly(o-phenylenediamine) Nanoparticles, Int. J. Electrochem. Sci., 2017, 12, p 3417–3431CrossRef
Metadata
Title
Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid
Authors
Y. Sasikumar
A. Madhan Kumar
R. Suresh Babu
P. Dhaiveegan
N. Al-Aqeeli
Ana L. F. de Barros
Publication date
18-06-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04143-7

Other articles of this Issue 6/2019

Journal of Materials Engineering and Performance 6/2019 Go to the issue

Premium Partners