Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 3/2016

06-11-2015

Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes

Authors: Yingmin Luo, Bing Yin, Heqiu Zhang, Yu Qiu, Jixue Lei, Yue Chang, Yu Zhao, Jiuyu Ji, Lizhong Hu

Published in: Journal of Materials Science: Materials in Electronics | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research work, a p-NiO/n-ZnO heterostructure was fabricated using thermal oxidation and hydrothermal growth processes. The p-NiO films were oxidized at different temperatures. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible spectral analysis were used to characterize the p-NiO/n-ZnO heterostructure. The results indicated that the NiO films oxidized at higher temperature have wider optical band gap and lower defect density. In particular, by comparing the photoresponse properties of the UV photodetectors oxidized at different temperatures we suggest that the oxidation temperatures have a great influence on the photoresponse time. The defect density of NiO film decreases with increasing oxidation temperature. And the defect density affects the photoresponse characteristics that the decay time decreases with the decreasing of defect density as the NiO oxidation temperature increases. This work could serve as a valuable guideline for designing and improving the p-NiO/n-ZnO UV photodetectors in a low-cost and large-scale way.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.D. Li, S.Y. Chou, Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express 18, 931–937 (2010)CrossRef W.D. Li, S.Y. Chou, Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express 18, 931–937 (2010)CrossRef
2.
go back to reference M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433–7473 (1996)CrossRef M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433–7473 (1996)CrossRef
3.
go back to reference B. Yin, Y. Qiu, H.Q. Zhang, J.Y. Ji, J.X. Lei, Y.M. Luo, Y. Zhao, L.Z. Hu, Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition. J Mater. Sci. Mater. Electron. 26, 742–746 (2015)CrossRef B. Yin, Y. Qiu, H.Q. Zhang, J.Y. Ji, J.X. Lei, Y.M. Luo, Y. Zhao, L.Z. Hu, Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition. J Mater. Sci. Mater. Electron. 26, 742–746 (2015)CrossRef
4.
go back to reference L.T. Hoa, H.N. Tien, S.H. Hur, A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process. Sens. Actuators A (Phys.) 207, 20–24 (2014)CrossRef L.T. Hoa, H.N. Tien, S.H. Hur, A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process. Sens. Actuators A (Phys.) 207, 20–24 (2014)CrossRef
5.
go back to reference W. Ruey-Chi, C. Ming-Guan, Enhanced photosensing and tunable luminescence from ZnO/NiO and ZnO/Ni core-shell nanorods. Sens. Actuators B Chem. 178, 212–216 (2013)CrossRef W. Ruey-Chi, C. Ming-Guan, Enhanced photosensing and tunable luminescence from ZnO/NiO and ZnO/Ni core-shell nanorods. Sens. Actuators B Chem. 178, 212–216 (2013)CrossRef
6.
go back to reference D.Y. Kim, J. Ryu, J. Manders, J. Lee, F. So, Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector. ACS Appl. Mater. Interfaces 6, 1370–1374 (2014)CrossRef D.Y. Kim, J. Ryu, J. Manders, J. Lee, F. So, Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector. ACS Appl. Mater. Interfaces 6, 1370–1374 (2014)CrossRef
7.
go back to reference Y. Qiu, L.Z. Hu, D.Q. Yu, H.Q. Zhang, J.C. Sun, B. Wang, J.X. Ma, L.N. Wang, K.T. Sun, Z.W. Zhao, Synthesis of gear-shaped ZnO microwires by chemical vapour deposition. Micro Nano Lett. 5, 251–253 (2010)CrossRef Y. Qiu, L.Z. Hu, D.Q. Yu, H.Q. Zhang, J.C. Sun, B. Wang, J.X. Ma, L.N. Wang, K.T. Sun, Z.W. Zhao, Synthesis of gear-shaped ZnO microwires by chemical vapour deposition. Micro Nano Lett. 5, 251–253 (2010)CrossRef
8.
go back to reference H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158 (2002)CrossRef H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158 (2002)CrossRef
9.
go back to reference G. Goncalves, A. Pimentel, E. Fortunato, R. Martins, E.L. Queiroz, R.F. Bianchi, R.M. Faria, UV and ozone influence on the conductivity of ZnO thin films. J. Non-Cryst. Solids 352, 1444–1447 (2006)CrossRef G. Goncalves, A. Pimentel, E. Fortunato, R. Martins, E.L. Queiroz, R.F. Bianchi, R.M. Faria, UV and ozone influence on the conductivity of ZnO thin films. J. Non-Cryst. Solids 352, 1444–1447 (2006)CrossRef
10.
go back to reference R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Density-controlled growth of ZnO nanowires via nanoparticle-assisted pulsed-laser deposition and their optical properties. Jpn. J. Appl. Phys. 47, 741–745 (2008)CrossRef R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Density-controlled growth of ZnO nanowires via nanoparticle-assisted pulsed-laser deposition and their optical properties. Jpn. J. Appl. Phys. 47, 741–745 (2008)CrossRef
11.
go back to reference W.Z. Liu, H.Y. Xu, L. Wang, X.H. Li, Y.C. Liu, Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties. Aip Adv. 1, 022145 (2011)CrossRef W.Z. Liu, H.Y. Xu, L. Wang, X.H. Li, Y.C. Liu, Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties. Aip Adv. 1, 022145 (2011)CrossRef
12.
go back to reference T. Zhang, Y. Zeng, H.T. Fan, L.J. Wang, R. Wang, W.Y. Fu, H.B. Yang, Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process. J. Phys. D Appl. Phys. 42, 045103 (2009)CrossRef T. Zhang, Y. Zeng, H.T. Fan, L.J. Wang, R. Wang, W.Y. Fu, H.B. Yang, Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process. J. Phys. D Appl. Phys. 42, 045103 (2009)CrossRef
13.
go back to reference X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens. Actuators B Chem. 213, 222–233 (2015)CrossRef X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens. Actuators B Chem. 213, 222–233 (2015)CrossRef
14.
go back to reference M. Cittadini, M. Sturaro, M. Guglielmi, A. Resmini, I.G. Tredici, U. Anselmi-Tamburini, P. Koshy, C.C. Sorrell, A. Martucci, ZnO nanorods grown on ZnO sol–gel seed films: characteristics and optical gas-sensing properties. Sens. Actuators B Chem. 213, 493–500 (2015)CrossRef M. Cittadini, M. Sturaro, M. Guglielmi, A. Resmini, I.G. Tredici, U. Anselmi-Tamburini, P. Koshy, C.C. Sorrell, A. Martucci, ZnO nanorods grown on ZnO sol–gel seed films: characteristics and optical gas-sensing properties. Sens. Actuators B Chem. 213, 493–500 (2015)CrossRef
15.
go back to reference P.S. Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B Chem. 212, 10–17 (2015)CrossRef P.S. Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B Chem. 212, 10–17 (2015)CrossRef
16.
go back to reference C.G. Nuniez, M. Sachsenhauser, B. Blashcke, A.G. Marin, J.A. Garrido, J.L. Pau, Effects of hydroxylation and silanization on the surface properties of ZnO nanowires. Acs Appl. Mater. Interfaces 7, 5331–5337 (2015)CrossRef C.G. Nuniez, M. Sachsenhauser, B. Blashcke, A.G. Marin, J.A. Garrido, J.L. Pau, Effects of hydroxylation and silanization on the surface properties of ZnO nanowires. Acs Appl. Mater. Interfaces 7, 5331–5337 (2015)CrossRef
17.
go back to reference X.L. Ren, D. Chen, X.W. Meng, F.Q. Tang, X.Q. Hou, D. Han, L. Zhang, Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J. Colloid Interface Sci. 334, 183–187 (2009)CrossRef X.L. Ren, D. Chen, X.W. Meng, F.Q. Tang, X.Q. Hou, D. Han, L. Zhang, Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J. Colloid Interface Sci. 334, 183–187 (2009)CrossRef
18.
go back to reference F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, B.L. Su, Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology 1, 588–594 (2006)CrossRef F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, B.L. Su, Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology 1, 588–594 (2006)CrossRef
19.
go back to reference M. Misra, P. Kapur, M.L. Singla, Optoelectronics behaviour of ZnO nanorods for UV detection. J. Mater. Sci. Mater. Electron. 24, 3940–3945 (2013)CrossRef M. Misra, P. Kapur, M.L. Singla, Optoelectronics behaviour of ZnO nanorods for UV detection. J. Mater. Sci. Mater. Electron. 24, 3940–3945 (2013)CrossRef
20.
go back to reference C. Liu, B.P. Zhang, Z.W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa, R. Mu, Fabrication and characterization of ZnO film based UV photodetector. J. Mater. Sci. Mater. Electron. 20, 197–201 (2009)CrossRef C. Liu, B.P. Zhang, Z.W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa, R. Mu, Fabrication and characterization of ZnO film based UV photodetector. J. Mater. Sci. Mater. Electron. 20, 197–201 (2009)CrossRef
21.
go back to reference J.R. Manders, T.H. Lai, Y. An, W. Xu, J. Lee, D.Y. Kim, G. Bosman, F. So, Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv. Funct. Mater. 24, 7205–7210 (2014) J.R. Manders, T.H. Lai, Y. An, W. Xu, J. Lee, D.Y. Kim, G. Bosman, F. So, Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv. Funct. Mater. 24, 7205–7210 (2014)
22.
go back to reference T. Guo, Y.D. Luo, Y.J. Zhang, Y.H. Lin, C.W. Nan, Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst. Growth Des. 14, 2329–2334 (2014)CrossRef T. Guo, Y.D. Luo, Y.J. Zhang, Y.H. Lin, C.W. Nan, Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst. Growth Des. 14, 2329–2334 (2014)CrossRef
23.
go back to reference Y.W. Shen, X.Q. Yan, Z.M. Bai, X. Zheng, Y.H. Sun, Y.C. Liu, P. Lin, X. Chen, Y. Zhang, A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. Rsc Adv. 5, 5976–5981 (2015)CrossRef Y.W. Shen, X.Q. Yan, Z.M. Bai, X. Zheng, Y.H. Sun, Y.C. Liu, P. Lin, X. Chen, Y. Zhang, A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. Rsc Adv. 5, 5976–5981 (2015)CrossRef
24.
go back to reference H. Shen, C.X. Shan, B.H. Li, B. Xuan, D.Z. Shen, Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors. Appl. Phys. Lett. 103, 2329–2334 (2013) H. Shen, C.X. Shan, B.H. Li, B. Xuan, D.Z. Shen, Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors. Appl. Phys. Lett. 103, 2329–2334 (2013)
25.
go back to reference A. Echresh, C.O. Chey, M.Z. Shoushtari, V. Khranovskyy, O. Nur, M. Willander, UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. 632, 165–171 (2015)CrossRef A. Echresh, C.O. Chey, M.Z. Shoushtari, V. Khranovskyy, O. Nur, M. Willander, UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. 632, 165–171 (2015)CrossRef
26.
go back to reference W.W. Liu, B. Yao, B.H. Li, Y.F. Li, J. Zheng, Z.Z. Zhang, C.X. Shan, J.Y. Zhang, D.Z. Shen, X.W. Fan, MgZnO/ZnO p-n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy. Solid State Sci. 12, 1567–1569 (2010)CrossRef W.W. Liu, B. Yao, B.H. Li, Y.F. Li, J. Zheng, Z.Z. Zhang, C.X. Shan, J.Y. Zhang, D.Z. Shen, X.W. Fan, MgZnO/ZnO p-n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy. Solid State Sci. 12, 1567–1569 (2010)CrossRef
27.
go back to reference I.S. Jeong, J.H. Kim, H.H. Park, S. Im, n-ZnO/p-Si UV photodetectors employing AlOx films for antireflection. Thin Solid Films 447, 111–114 (2004)CrossRef I.S. Jeong, J.H. Kim, H.H. Park, S. Im, n-ZnO/p-Si UV photodetectors employing AlOx films for antireflection. Thin Solid Films 447, 111–114 (2004)CrossRef
28.
go back to reference T.D. Dao, C.T.T. Dang, G. Han, C.V. Hoang, W. Yi, V. Narayanamurti, T. Nagao, Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector. Appl. Phys. Lett. 103, 193119 (2013)CrossRef T.D. Dao, C.T.T. Dang, G. Han, C.V. Hoang, W. Yi, V. Narayanamurti, T. Nagao, Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector. Appl. Phys. Lett. 103, 193119 (2013)CrossRef
29.
go back to reference K. Kwangeun, L. Myeongwon, Y. Junggwon, K. Sangsig, A p–n heterojunction diode constructed with a p-Si nanowire and an n-ZnO nanoparticle thin-film by dielectrophoresis. Trans. Korean Inst. Electr. Eng. 60, 105–108 (2011) K. Kwangeun, L. Myeongwon, Y. Junggwon, K. Sangsig, A p–n heterojunction diode constructed with a p-Si nanowire and an n-ZnO nanoparticle thin-film by dielectrophoresis. Trans. Korean Inst. Electr. Eng. 60, 105–108 (2011)
30.
go back to reference Y.H. Ko, G. Nagaraju, J.S. Yu, Wire-shaped ultraviolet photodetectors based on a nanostructured NiO/ZnO coaxial p–n heterojunction via thermal oxidation and hydrothermal growth processes. Nanoscale 7, 2735–2742 (2015)CrossRef Y.H. Ko, G. Nagaraju, J.S. Yu, Wire-shaped ultraviolet photodetectors based on a nanostructured NiO/ZnO coaxial p–n heterojunction via thermal oxidation and hydrothermal growth processes. Nanoscale 7, 2735–2742 (2015)CrossRef
31.
go back to reference R.-C. Wang, M.-G. Chen, Enhanced photosensing and tunable luminescence from ZnO/NiO and ZnO/Ni core-shell nanorods. Sens. Actuators B Chem. 178, 212–216 (2013)CrossRef R.-C. Wang, M.-G. Chen, Enhanced photosensing and tunable luminescence from ZnO/NiO and ZnO/Ni core-shell nanorods. Sens. Actuators B Chem. 178, 212–216 (2013)CrossRef
32.
go back to reference T. Shu-Yi, H. Min-Hsiung, L. Yang-Ming, Optically transparent of n-ZnO/p-NiO heterojunction for ultraviolet photodetector application. Mater. Sci. Forum 687, 711–715 (2011)CrossRef T. Shu-Yi, H. Min-Hsiung, L. Yang-Ming, Optically transparent of n-ZnO/p-NiO heterojunction for ultraviolet photodetector application. Mater. Sci. Forum 687, 711–715 (2011)CrossRef
33.
go back to reference S.H. Jee, H. Park, S.H. Kim, J.W. Lee, Y.S. Yoon, C.W. Kim, D.-J. Kim, Properties of hetero-structured diode with n-type ZnO and p-type NiO. J Korean Phys Soc. 53, 446–450 (2008) S.H. Jee, H. Park, S.H. Kim, J.W. Lee, Y.S. Yoon, C.W. Kim, D.-J. Kim, Properties of hetero-structured diode with n-type ZnO and p-type NiO. J Korean Phys Soc. 53, 446–450 (2008)
34.
go back to reference W. Dai, X.H. Pan, S.S. Chen, C. Chen, Z. Wen, H.H. Zhang, Z.Z. Ye, Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. J. Mater. Chem. C 2, 4606–4614 (2014)CrossRef W. Dai, X.H. Pan, S.S. Chen, C. Chen, Z. Wen, H.H. Zhang, Z.Z. Ye, Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. J. Mater. Chem. C 2, 4606–4614 (2014)CrossRef
35.
go back to reference Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, J. He, A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures. Nanoscale 4, 2678–2684 (2012)CrossRef Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, J. He, A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures. Nanoscale 4, 2678–2684 (2012)CrossRef
36.
go back to reference Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl. Surf. Sci. 256, 1698–1702 (2010)CrossRef Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl. Surf. Sci. 256, 1698–1702 (2010)CrossRef
37.
go back to reference A. Sobhani, M. Salavati-Niasari, A new simple route for the preparation of nanosized copper selenides under different conditions. Ceram. Int. 40, 8173–8182 (2014)CrossRef A. Sobhani, M. Salavati-Niasari, A new simple route for the preparation of nanosized copper selenides under different conditions. Ceram. Int. 40, 8173–8182 (2014)CrossRef
38.
go back to reference A. Sobhani, M. Salavati-Niasari, Hydrothermal synthesis, characterization, and magnetic properties of cubic MnSe 2/Se nanocomposites material. J. Alloys Compd. 617, 93–101 (2014)CrossRef A. Sobhani, M. Salavati-Niasari, Hydrothermal synthesis, characterization, and magnetic properties of cubic MnSe 2/Se nanocomposites material. J. Alloys Compd. 617, 93–101 (2014)CrossRef
39.
go back to reference A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of FeSe 2 nanoparticles and FeSe 2/FeO (OH) nanocomposites by hydrothermal method. J. Alloys Compd. 625, 26–33 (2015)CrossRef A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of FeSe 2 nanoparticles and FeSe 2/FeO (OH) nanocomposites by hydrothermal method. J. Alloys Compd. 625, 26–33 (2015)CrossRef
40.
go back to reference M. Aegerter, A. Al-Kahlout, A. Pawlicka, Brown coloring electrochromic devices based on NiO–TiO 2 layers. Sol. Energy Mater. Sol. Cells 90, 3583–3601 (2006)CrossRef M. Aegerter, A. Al-Kahlout, A. Pawlicka, Brown coloring electrochromic devices based on NiO–TiO 2 layers. Sol. Energy Mater. Sol. Cells 90, 3583–3601 (2006)CrossRef
41.
go back to reference A. Echresh, M.A. Abbasi, M.Z. Shoushtari, M. Farbod, O. Nur, M. Willander, Optimization and characterization of NiO thin film and the influence of thickness on the electrical properties of n-ZnO nanorods/p-NiO heterojunction. Semicond. Sci. Technol. 29, 115109 (2014)CrossRef A. Echresh, M.A. Abbasi, M.Z. Shoushtari, M. Farbod, O. Nur, M. Willander, Optimization and characterization of NiO thin film and the influence of thickness on the electrical properties of n-ZnO nanorods/p-NiO heterojunction. Semicond. Sci. Technol. 29, 115109 (2014)CrossRef
42.
go back to reference D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B Solid State 2, 3112–3134 (1970)CrossRef D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B Solid State 2, 3112–3134 (1970)CrossRef
43.
go back to reference G. Konstantatos, L. Levina, A. Fischer, E.H. Sargent, Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008)CrossRef G. Konstantatos, L. Levina, A. Fischer, E.H. Sargent, Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008)CrossRef
44.
go back to reference J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 94, 191103 (2009)CrossRef J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 94, 191103 (2009)CrossRef
Metadata
Title
Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes
Authors
Yingmin Luo
Bing Yin
Heqiu Zhang
Yu Qiu
Jixue Lei
Yue Chang
Yu Zhao
Jiuyu Ji
Lizhong Hu
Publication date
06-11-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 3/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-4031-y

Other articles of this Issue 3/2016

Journal of Materials Science: Materials in Electronics 3/2016 Go to the issue