Skip to main content
Top
Published in: Journal of Materials Science 12/2017

10-03-2017 | Original Paper

Fabrication of partially biobased carbon fibers from novel lignosulfonate–acrylonitrile copolymers

Authors: Qin Ouyang, Keqiang Xia, Dapeng Liu, Xuefeng Jiang, Hongbo Ma, Yousi Chen

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignin, as an abundant carbon-rich renewable resource, is a promising precursor for carbon fibers. However, due to the poor spinnability of lignin, a great challenge comes from the spinning of precursor fibers. In this work, a series of lignosulfonate–acrylonitrile (LS–AN) copolymers with different LS contents were prepared by a two-step process consisting of esterification and free radical copolymerization. In this strategy, lignin was used as a macromer and chemically bonded to acrylonitrile segmer, resulting in significant improvement of the spinnability. Continuous long precursor fibers with a dense structure were successfully prepared from these copolymers by a wet spinning technique and then converted into carbon fibers by thermal stabilization and carbonization. The LS–AN copolymers were characterized by FTIR, GPC, and rheological method. The results confirmed the macromolecular characteristic of the LS–AN copolymers. A hanging lantern model was proposed to describe the molecular structure of the LS–AN copolymers. Effect of the LS–AN copolymers on the microstructure and mechanical properties of carbon fibers was investigated by SEM, single fiber tensile testing, XRD, and HRTEM. The results demonstrated the feasibility of developing partially biobased carbon fibers from the novel LS–AN copolymers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Ding R, Wu HC, Thunga M, Bowler N, Kessler MR (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon 100:126–136CrossRef Ding R, Wu HC, Thunga M, Bowler N, Kessler MR (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon 100:126–136CrossRef
3.
go back to reference Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4(3):283–296CrossRef Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4(3):283–296CrossRef
4.
go back to reference Mainka H, Hilfert L, Busse S, Edelmann F, Haak E, Herrmann AS (2015) Characterization of the major reactions during conversion of lignin to carbon fiber. J Mater Res Technol 4(4):377–391CrossRef Mainka H, Hilfert L, Busse S, Edelmann F, Haak E, Herrmann AS (2015) Characterization of the major reactions during conversion of lignin to carbon fiber. J Mater Res Technol 4(4):377–391CrossRef
5.
go back to reference Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728CrossRef Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728CrossRef
6.
go back to reference Frank E, Steudle LM, Ingildeev D, Sporl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Edit 53(21):5262–5298CrossRef Frank E, Steudle LM, Ingildeev D, Sporl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Edit 53(21):5262–5298CrossRef
7.
go back to reference Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17(11):4862–4887CrossRef Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17(11):4862–4887CrossRef
8.
go back to reference Schreiber M, Vivekanandhan S, Cooke P, Mohanty AK, Misra M (2014) Electrospun green fibres from lignin and chitosan: a novel polycomplexation process for the production of lignin-based fibres. J Mater Sci 49:7949–7958. doi:10.1007/s10853-014-8481-z CrossRef Schreiber M, Vivekanandhan S, Cooke P, Mohanty AK, Misra M (2014) Electrospun green fibres from lignin and chitosan: a novel polycomplexation process for the production of lignin-based fibres. J Mater Sci 49:7949–7958. doi:10.​1007/​s10853-014-8481-z CrossRef
9.
go back to reference Laurichesse S, Averous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRef Laurichesse S, Averous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRef
10.
go back to reference Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246813. doi:10.1126/science.1246843 CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246813. doi:10.​1126/​science.​1246843 CrossRef
11.
go back to reference Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. Chemsuschem 8(23):3941–3958CrossRef Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. Chemsuschem 8(23):3941–3958CrossRef
12.
go back to reference Souto F, Calado V, Pereira N (2015) Carbon fiber from lignin: a literature review. Materia-Rio De Janeiro 20(1):100–114CrossRef Souto F, Calado V, Pereira N (2015) Carbon fiber from lignin: a literature review. Materia-Rio De Janeiro 20(1):100–114CrossRef
14.
go back to reference Thunga M, Chen K, Grewell D, Kessler MR (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 68:159–166CrossRef Thunga M, Chen K, Grewell D, Kessler MR (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 68:159–166CrossRef
15.
go back to reference Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers. Springer, Berlin Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers. Springer, Berlin
16.
go back to reference Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234CrossRef Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234CrossRef
17.
go back to reference Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48(8):1485–1491CrossRef Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48(8):1485–1491CrossRef
18.
go back to reference Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920CrossRef Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920CrossRef
19.
go back to reference Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13(2):97–105CrossRef Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13(2):97–105CrossRef
20.
go back to reference Chatterjee S, Clingenpeel A, McKenna A, Rios O, Johs A (2014) Synthesis and characterization of lignin-based carbon materials with tunable microstructure. Rsc Adv 4(9):4743–4753CrossRef Chatterjee S, Clingenpeel A, McKenna A, Rios O, Johs A (2014) Synthesis and characterization of lignin-based carbon materials with tunable microstructure. Rsc Adv 4(9):4743–4753CrossRef
21.
go back to reference Chatterjee S, Jones EB, Clingenpeel AC, McKenna AM, Rios O, McNutt NW, Keffer DJ, Johs A (2014) Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. ACS Sustain Chem Eng 2(8):2002–2010CrossRef Chatterjee S, Jones EB, Clingenpeel AC, McKenna AM, Rios O, McNutt NW, Keffer DJ, Johs A (2014) Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. ACS Sustain Chem Eng 2(8):2002–2010CrossRef
22.
go back to reference Zhang M, Ogale AA (2014) Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon 69:626–629CrossRef Zhang M, Ogale AA (2014) Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon 69:626–629CrossRef
23.
go back to reference Otani S, Fukuoka Y, Igarashi B, Sasaki K (1969) Method for producing carbonized lignin fiber. US patent 3461082 Otani S, Fukuoka Y, Igarashi B, Sasaki K (1969) Method for producing carbonized lignin fiber. US patent 3461082
24.
go back to reference Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 13(3):918–926CrossRef Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 13(3):918–926CrossRef
25.
go back to reference Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911CrossRef Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911CrossRef
26.
go back to reference Brodin I, Ernstsson M, Gellerstedt G, Sjoholm E (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung 66(2):141–147CrossRef Brodin I, Ernstsson M, Gellerstedt G, Sjoholm E (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung 66(2):141–147CrossRef
27.
go back to reference Imel AE, Naskar AK, Dadmun MD (2016) Understanding the impact of poly(ethylene oxide) on the assembly of lignin in solution toward improved carbon fiber production. ACS Appl Mater Interfaces 8(5):3200–3207CrossRef Imel AE, Naskar AK, Dadmun MD (2016) Understanding the impact of poly(ethylene oxide) on the assembly of lignin in solution toward improved carbon fiber production. ACS Appl Mater Interfaces 8(5):3200–3207CrossRef
28.
go back to reference Dallmeyer I, Lin LT, Li YJ, Ko F, Kadla JF (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299(5):540–551CrossRef Dallmeyer I, Lin LT, Li YJ, Ko F, Kadla JF (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299(5):540–551CrossRef
29.
go back to reference Svinterikos E, Zuburtikudis I (2016) Carbon nanofibers from renewable bioresources (lignin) and a recycled commodity polymer poly(ethylene terephthalate). J Appl Polym Sci 133(37):1–12. doi:10.1002/APP.43936 CrossRef Svinterikos E, Zuburtikudis I (2016) Carbon nanofibers from renewable bioresources (lignin) and a recycled commodity polymer poly(ethylene terephthalate). J Appl Polym Sci 133(37):1–12. doi:10.​1002/​APP.​43936 CrossRef
30.
go back to reference Kubo S, Yoshida T, Kadla JF (2007) Surface porosity of lignin/PP blend carbon fibers. J Wood Chem Technol 27(3–4):257–271CrossRef Kubo S, Yoshida T, Kadla JF (2007) Surface porosity of lignin/PP blend carbon fibers. J Wood Chem Technol 27(3–4):257–271CrossRef
31.
go back to reference Wang SC, Li Y, Xiang HX, Zhou Z, Chang TK, Zhu MF (2015) Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (PLA) blends. Compos Sci Technol 119:20–25CrossRef Wang SC, Li Y, Xiang HX, Zhou Z, Chang TK, Zhu MF (2015) Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (PLA) blends. Compos Sci Technol 119:20–25CrossRef
32.
go back to reference Liu HC, Chien AT, Newcomb BA, Davijani AAB, Kumar S (2016) Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–389CrossRef Liu HC, Chien AT, Newcomb BA, Davijani AAB, Kumar S (2016) Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–389CrossRef
33.
go back to reference Husman G (2014) Development and commercialization of a novel low-cost carbon fiber. Presentation at 2014DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, Oak Ridge National Laboratory Husman G (2014) Development and commercialization of a novel low-cost carbon fiber. Presentation at 2014DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, Oak Ridge National Laboratory
34.
go back to reference Oroumei A, Fox B, Naebe M (2015) Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin. ACS Sustain Chem Eng 3(4):758–769CrossRef Oroumei A, Fox B, Naebe M (2015) Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin. ACS Sustain Chem Eng 3(4):758–769CrossRef
35.
go back to reference Liu HC, Chien AT, Newcomb BA, Liu YD, Kumar S (2015) Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng 3(9):1943–1954CrossRef Liu HC, Chien AT, Newcomb BA, Liu YD, Kumar S (2015) Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng 3(9):1943–1954CrossRef
36.
go back to reference Dong XZ, Lu CX, Zhou PC, Zhang SC, Wang LY, Li DH (2015) Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. Rsc Adv 5(53):42259–42265CrossRef Dong XZ, Lu CX, Zhou PC, Zhang SC, Wang LY, Li DH (2015) Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. Rsc Adv 5(53):42259–42265CrossRef
38.
go back to reference Xia KQ, Ouyang Q, Chen YS, Wang XF, Qian X, Wang L (2016) Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain Chem Eng 4(1):159–168CrossRef Xia KQ, Ouyang Q, Chen YS, Wang XF, Qian X, Wang L (2016) Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain Chem Eng 4(1):159–168CrossRef
39.
go back to reference Ouyang Q, Wang XH, Wang XL, Huang J, Huang XW, Chen YS (2016) Simultaneous DSC/TG analysis on the thermal behavior of PAN polymers prepared by aqueous free-radical polymerization. Polym Degrad Stab 130:320–327CrossRef Ouyang Q, Wang XH, Wang XL, Huang J, Huang XW, Chen YS (2016) Simultaneous DSC/TG analysis on the thermal behavior of PAN polymers prepared by aqueous free-radical polymerization. Polym Degrad Stab 130:320–327CrossRef
40.
go back to reference Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162(5–6):453–459CrossRef Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162(5–6):453–459CrossRef
41.
go back to reference Cifre JGH, La Torre JGD (2004) Orientation of polymer chains in dilute solution under shear: effect of chain model and excluded volume. Macromol Theor Simul 13(3):273–279CrossRef Cifre JGH, La Torre JGD (2004) Orientation of polymer chains in dilute solution under shear: effect of chain model and excluded volume. Macromol Theor Simul 13(3):273–279CrossRef
42.
go back to reference Ouyang Q, Chen Y, Wang X, Ma H, Li D, Yang J (2015) Supramolecular structure of highly oriented wet-spun polyacrylonitrile fibers used in the preparation of high-performance carbon fibers. J Polym Res 22(12):1–10CrossRef Ouyang Q, Chen Y, Wang X, Ma H, Li D, Yang J (2015) Supramolecular structure of highly oriented wet-spun polyacrylonitrile fibers used in the preparation of high-performance carbon fibers. J Polym Res 22(12):1–10CrossRef
43.
go back to reference Ren FZ, Lu CX, Liang XY, Wu GP, He F, Ling LC (2004) Influence of amination on the structure of a PAN nascent filament during wet spinning. New Carbon Mater 19(4):268–274 Ren FZ, Lu CX, Liang XY, Wu GP, He F, Ling LC (2004) Influence of amination on the structure of a PAN nascent filament during wet spinning. New Carbon Mater 19(4):268–274
44.
45.
go back to reference Chae HG, Newcomb BA, Gulgunje PV, Liu Y, Gupta KK, Kamath MG, Lyons KM, Ghoshal S, Pramanik C, Giannuzzi L (2015) High strength and high modulus carbon fibers. Carbon 93:81–87CrossRef Chae HG, Newcomb BA, Gulgunje PV, Liu Y, Gupta KK, Kamath MG, Lyons KM, Ghoshal S, Pramanik C, Giannuzzi L (2015) High strength and high modulus carbon fibers. Carbon 93:81–87CrossRef
46.
go back to reference Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7–8):1119–1124CrossRef Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7–8):1119–1124CrossRef
47.
go back to reference Iwashita N (2016) Chapter 2—X-ray powder diffraction, materials science and engineering of carbon. Tsinghua University Press, Beijing Iwashita N (2016) Chapter 2—X-ray powder diffraction, materials science and engineering of carbon. Tsinghua University Press, Beijing
48.
go back to reference Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem 8(12):2875–2879CrossRef Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem 8(12):2875–2879CrossRef
Metadata
Title
Fabrication of partially biobased carbon fibers from novel lignosulfonate–acrylonitrile copolymers
Authors
Qin Ouyang
Keqiang Xia
Dapeng Liu
Xuefeng Jiang
Hongbo Ma
Yousi Chen
Publication date
10-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0977-x

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners