Skip to main content
Top
Published in: Journal of Materials Science 12/2017

13-03-2017 | Original Paper

Metal-rich aluminum–polytetrafluoroethylene reactive composite powders prepared by mechanical milling at different temperatures

Authors: Siva Kumar Valluri, Mirko Schoenitz, Edward L. Dreizin

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aluminum–polytetrafluoroethylene (Al·PTFE) composite materials with 90 wt% Al are prepared by mechanical milling at both room and cryogenic temperatures. Distribution of PTFE in the material is more homogeneous in the cryogenically milled materials. Thermal analysis in inert atmosphere shows at least three distinct exothermic reaction steps below Al melting as well as evolution of AlF3 at temperatures above 800 °C. The heat of low-temperature exothermic reactions first increases and then decreases as a function of the milling time. In an oxidizing environment, all materials oxidize qualitatively similar to pure Al, and a composite milled cryogenically for 6 h oxidizes as fast as or faster than nano-sized aluminum powder. When heated at several thousand degrees per second, all composites ignite around 730 °C. Only the powders prepared by cryogenic milling could be ignited by electrostatic discharge (ESD) with energies of 720 mJ, while materials milled at room temperatures could not be ignited with energies as high as 2 J. In the ESD ignition experiments, the optical emission pulse is delayed compared to the pressure pulse, suggesting that a gas-generating PTFE decomposition triggers the ignition. The material cryogenically milled for 6 h is the most attractive, based on the magnitude of both pressure and emission pulses generated upon its ESD ignition, and based on the rate and extent of its oxidation in thermo-analytical experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang V (2000) Solid propellant chemistry combustion and motor interior ballistics 1999. American Institute of Aeronautics & Astronautics, Reston Yang V (2000) Solid propellant chemistry combustion and motor interior ballistics 1999. American Institute of Aeronautics & Astronautics, Reston
2.
go back to reference Davenas A (2012) Solid rocket propulsion technology. Elsevier, Amsterdam Davenas A (2012) Solid rocket propulsion technology. Elsevier, Amsterdam
3.
go back to reference Agrawal JP (2015) High energy materials: propellants, explosives and pyrotechnics. Wiley, London Agrawal JP (2015) High energy materials: propellants, explosives and pyrotechnics. Wiley, London
4.
go back to reference Ernst LF, Dryer FL, Yetter RA, Parr TP, Hanson-Parr DM (2000) Aluminum droplet combustion in fluorine and mixed oxygen/fluorine containing environments. Symp (Int) Combust 28:871–878 Ernst LF, Dryer FL, Yetter RA, Parr TP, Hanson-Parr DM (2000) Aluminum droplet combustion in fluorine and mixed oxygen/fluorine containing environments. Symp (Int) Combust 28:871–878
5.
go back to reference Politzer P, Lane P, Concha MC (2005) Computational determination of the energetics of boron and aluminum combustion reactions. In: Manaa MR (ed) Chemistry at extreme conditions. Elsevier Science, Amsterdam, pp 473–493CrossRef Politzer P, Lane P, Concha MC (2005) Computational determination of the energetics of boron and aluminum combustion reactions. In: Manaa MR (ed) Chemistry at extreme conditions. Elsevier Science, Amsterdam, pp 473–493CrossRef
6.
go back to reference Farber M, Srivastava RD (1976) Thermochemical reactions of aluminum and fluorine in hydrogenoxygen flames. Combust Flame 27:99–105CrossRef Farber M, Srivastava RD (1976) Thermochemical reactions of aluminum and fluorine in hydrogenoxygen flames. Combust Flame 27:99–105CrossRef
7.
go back to reference Chase MW (1998) NIST-JANAF themochemical tables, fourth edition. J Phys Chem Ref Data Monogr 9:1–1951 Chase MW (1998) NIST-JANAF themochemical tables, fourth edition. J Phys Chem Ref Data Monogr 9:1–1951
8.
go back to reference Lee RJ, Mock W Jr, Carney JR, Holt WH, Pangilinan GI, Gamache RM, Boteler JM, Bohl DG, Drotar J, Lawrence GW (2006) Reactive materials studies. AIP Conf Proc 845:169–174CrossRef Lee RJ, Mock W Jr, Carney JR, Holt WH, Pangilinan GI, Gamache RM, Boteler JM, Bohl DG, Drotar J, Lawrence GW (2006) Reactive materials studies. AIP Conf Proc 845:169–174CrossRef
9.
go back to reference Collins ES, Skelton BR, Pantoya ML, Irin F, Green MJ, Daniels MA (2015) Ignition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. Combust Flame 162:1417–1421CrossRef Collins ES, Skelton BR, Pantoya ML, Irin F, Green MJ, Daniels MA (2015) Ignition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. Combust Flame 162:1417–1421CrossRef
10.
go back to reference Osborne DT, Pantoya ML (2007) Effect of al particle size on the thermal degradation of Al/teflon mixtures. Combust Sci Technol 179:1467–1480CrossRef Osborne DT, Pantoya ML (2007) Effect of al particle size on the thermal degradation of Al/teflon mixtures. Combust Sci Technol 179:1467–1480CrossRef
11.
go back to reference Pantoya ML, Dean SW (2009) The influence of alumina passivation on nano-Al/Teflon reactions. Thermochim Acta 493:109–110CrossRef Pantoya ML, Dean SW (2009) The influence of alumina passivation on nano-Al/Teflon reactions. Thermochim Acta 493:109–110CrossRef
12.
go back to reference Dolgoborodov AY, Makhov MN, Kolbanev IV, Streletskiǐ AN, Fortov VE (2005) Detonation in an aluminum–teflon mixture. JETP Lett 81:311–314CrossRef Dolgoborodov AY, Makhov MN, Kolbanev IV, Streletskiǐ AN, Fortov VE (2005) Detonation in an aluminum–teflon mixture. JETP Lett 81:311–314CrossRef
13.
go back to reference Sterletskii AN, Dolgoborodov AY, Kolbanev IV, Makhov MN, Lomaeva SF, Borunova AB, Fortov VE (2009) Structure of mechanically activated high-energy Al+ polytetrafluoroethylene nanocomposites. Colloid J 71:852–860CrossRef Sterletskii AN, Dolgoborodov AY, Kolbanev IV, Makhov MN, Lomaeva SF, Borunova AB, Fortov VE (2009) Structure of mechanically activated high-energy Al+ polytetrafluoroethylene nanocomposites. Colloid J 71:852–860CrossRef
14.
go back to reference Streletskii AN, Kolbanev IV, Permenov DG, Povstugar IV, Borunova AB, Dolgoborodov AY, Makhov MN, Butyagin PY (2008) The reactivity of Ai-based “mechanochemical” nanocomposites. Rev Adv Mater Sci 18:353–359 Streletskii AN, Kolbanev IV, Permenov DG, Povstugar IV, Borunova AB, Dolgoborodov AY, Makhov MN, Butyagin PY (2008) The reactivity of Ai-based “mechanochemical” nanocomposites. Rev Adv Mater Sci 18:353–359
15.
go back to reference Sippel TR, Son SF, Groven LJ (2013) Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech 38:286–295CrossRef Sippel TR, Son SF, Groven LJ (2013) Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech 38:286–295CrossRef
16.
go back to reference Sippel TR, Son SF, Groven LJ (2014) Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust Flame 161:311–321CrossRef Sippel TR, Son SF, Groven LJ (2014) Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust Flame 161:311–321CrossRef
17.
go back to reference Conner RW, Dlott DD (2010) Ultrafast condensed-phase emission from energetic composites of teflon and nanoaluminum. J Phys Chem A 114:6731–6741CrossRef Conner RW, Dlott DD (2010) Ultrafast condensed-phase emission from energetic composites of teflon and nanoaluminum. J Phys Chem A 114:6731–6741CrossRef
18.
go back to reference Gaurav M, Ramakrishna PA (2016) Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. Combust Flame 166:203–215CrossRef Gaurav M, Ramakrishna PA (2016) Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. Combust Flame 166:203–215CrossRef
19.
go back to reference Nacu S (2011) Practical aspects on using polytetrafluorethylene (PTFE) in pyrotechnic compositions. Rev Chim 62:113–115 Nacu S (2011) Practical aspects on using polytetrafluorethylene (PTFE) in pyrotechnic compositions. Rev Chim 62:113–115
20.
go back to reference Sippel TR, Son SF, Groven LJ, Zhang S, Dreizin EL (2015) Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust Flame 162(3):846–854CrossRef Sippel TR, Son SF, Groven LJ, Zhang S, Dreizin EL (2015) Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust Flame 162(3):846–854CrossRef
21.
go back to reference Blumm J, Lindemann A, Meyer M, Strasser C (2008) Characterization of PTFE using advanced thermal analysis techniques. Int J Thermophys 31(10):1919–1927CrossRef Blumm J, Lindemann A, Meyer M, Strasser C (2008) Characterization of PTFE using advanced thermal analysis techniques. Int J Thermophys 31(10):1919–1927CrossRef
22.
go back to reference Ward TS, Chen W, Schoenitz M, Dave RN, Dreizin EL (2005) A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Mater 53:2909–2918CrossRef Ward TS, Chen W, Schoenitz M, Dave RN, Dreizin EL (2005) A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Mater 53:2909–2918CrossRef
23.
go back to reference Santhanam PR, Dreizin EL (2012) Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol 201:401–411 Santhanam PR, Dreizin EL (2012) Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol 201:401–411
24.
go back to reference Santhanam PR, Ermoline A, Dreizin EL (2013) Discrete element model for an attritor mill with impeller responding to interactions with milling balls. Chem Eng Sci 101:366–373CrossRef Santhanam PR, Ermoline A, Dreizin EL (2013) Discrete element model for an attritor mill with impeller responding to interactions with milling balls. Chem Eng Sci 101:366–373CrossRef
25.
go back to reference Stamatis D, Dreizin EL (2011) Thermal initiation of consolidated nanocomposite thermites. Combust Flame 158:1631–1637CrossRef Stamatis D, Dreizin EL (2011) Thermal initiation of consolidated nanocomposite thermites. Combust Flame 158:1631–1637CrossRef
26.
go back to reference Ward TS, Trunov MA, Schoenitz M, Dreizin EL (2006) Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. Int J Heat Mass Transf 49:4943–4954CrossRef Ward TS, Trunov MA, Schoenitz M, Dreizin EL (2006) Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. Int J Heat Mass Transf 49:4943–4954CrossRef
27.
go back to reference Mittemeijer EJ, Welzel U (2008) The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr 223:552–560CrossRef Mittemeijer EJ, Welzel U (2008) The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr 223:552–560CrossRef
28.
go back to reference Conesa JA, Font R (2001) Polytetrafluoroethylene decomposition in air and nitrogen. Polym Eng Sci 41:2137–2147CrossRef Conesa JA, Font R (2001) Polytetrafluoroethylene decomposition in air and nitrogen. Polym Eng Sci 41:2137–2147CrossRef
29.
go back to reference Ksiązczak A, Boniuk H, Cudziło S (2003) Thermal decomposition of PTFE in the presence of silicon, calcium silicide, ferrosilicon and iron. J Therm Anal Calorim 74:569–574CrossRef Ksiązczak A, Boniuk H, Cudziło S (2003) Thermal decomposition of PTFE in the presence of silicon, calcium silicide, ferrosilicon and iron. J Therm Anal Calorim 74:569–574CrossRef
30.
go back to reference Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183CrossRef Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183CrossRef
31.
go back to reference Hobosyan MA, Kirakosyan KG, Kharatyan SL, Martirosyan KS (2015) PTFE–Al2O3 reactive interaction at high heating rates. J Therm Anal Calorim 119:245–251CrossRef Hobosyan MA, Kirakosyan KG, Kharatyan SL, Martirosyan KS (2015) PTFE–Al2O3 reactive interaction at high heating rates. J Therm Anal Calorim 119:245–251CrossRef
32.
go back to reference Mohan S, Trunov MA, Dreizin EL (2003) Characterization of aluminum powder ignition. In: The 2003 technical meeting of the eastern states section of the combustion institute. The Combustion Institute, University Park, pp 329–332 Mohan S, Trunov MA, Dreizin EL (2003) Characterization of aluminum powder ignition. In: The 2003 technical meeting of the eastern states section of the combustion institute. The Combustion Institute, University Park, pp 329–332
33.
go back to reference Egan GC, Mily EJ, Maria JP, Zachariah MR (2015) Probing the reaction dynamics of thermite nanolaminates. J Phys Chem C 119:20401–20408CrossRef Egan GC, Mily EJ, Maria JP, Zachariah MR (2015) Probing the reaction dynamics of thermite nanolaminates. J Phys Chem C 119:20401–20408CrossRef
34.
go back to reference Jian G, Piekiel NW, Zachariah MR (2012) Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: a mechanistic study. J Phys Chem C 116:26881–26887CrossRef Jian G, Piekiel NW, Zachariah MR (2012) Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: a mechanistic study. J Phys Chem C 116:26881–26887CrossRef
35.
go back to reference Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140:310–318CrossRef Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140:310–318CrossRef
36.
go back to reference Nie H, Schoenitz M, Dreizin EL (2016) Initial stages of oxidation of aluminum powder in oxygen. J Therm Anal Calorim 125:129–141CrossRef Nie H, Schoenitz M, Dreizin EL (2016) Initial stages of oxidation of aluminum powder in oxygen. J Therm Anal Calorim 125:129–141CrossRef
37.
go back to reference Shoshin YL, Trunov MA, Zhu X, Schoenitz M, Dreizin EL (2006) Ignition of aluminum-rich Al–Ti mechanical alloys in air. Combust Flame 144:688–697CrossRef Shoshin YL, Trunov MA, Zhu X, Schoenitz M, Dreizin EL (2006) Ignition of aluminum-rich Al–Ti mechanical alloys in air. Combust Flame 144:688–697CrossRef
Metadata
Title
Metal-rich aluminum–polytetrafluoroethylene reactive composite powders prepared by mechanical milling at different temperatures
Authors
Siva Kumar Valluri
Mirko Schoenitz
Edward L. Dreizin
Publication date
13-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0978-9

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners