Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2017

27-12-2016

Fabrication of SiC body by microwave sintering process

Authors: Sara Ahmadbeygi, Mahdi Khodaei, Ali Nemati, Omid Yaghobizadeh

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, SiC samples with 3, 5, 7.5 and 10 wt% Al2O3–Y2O3 as additives were made by powder metallurgy method, then sintering was performed by microwave-assisted process. β–SiC samples sintering was performed for 100 min. The highest sintered relative density 91.06% was achieved at 10 wt% additives content. The maximum values of hardness and toughness were up to 23.3 GPa and 6.14 MPa.m− 1/2. α–SiC and α–SiC/β–SiC samples sintering was performed for 120 min. The maximum value of density and hardness were up to 96.38% T.D and 24.88 GPa in α–SiC with 7.5 wt% additives, whereas the highest toughness was achieved at 10 wt% additives content in β–SiC samples. The α–SiC samples structure resulted in equiaxed grain morphology, while β–SiC samples yielded elongated grains. In samples contained α–SiC/β–SiC a significant reduction in grain size occurred by increasing α–SiC. Results showed that with increasing oxide, the thermal conductivity decreases and electrical resistance increases, also increasing the time of sintering increases thermal conductivity and electrical resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Microwave heating.
 
2
Yttrium Aluminum Garnets (3Y2O3.5Al2O3).
 
Literature
1.
go back to reference M. Rajabi, Z. Asadipanah, Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci 26, 6148–6156 (2015) M. Rajabi, Z. Asadipanah, Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci 26, 6148–6156 (2015)
2.
go back to reference M. Rajabi, M.M. Khodai, N. Askari, Microwave-assisted sintering of Al–ZrO2 nano-composites. J. Mater. Sci 25, 4577–4584 (2014) M. Rajabi, M.M. Khodai, N. Askari, Microwave-assisted sintering of Al–ZrO2 nano-composites. J. Mater. Sci 25, 4577–4584 (2014)
3.
go back to reference A. Goldstein, W.D. Kaplan, A. Singurindi, Liquid assisted sintering of SiC powders by MW (2.45 GHz) heating. J. Eur. Ceram. Soc. 22, 1891–1896 (2002)CrossRef A. Goldstein, W.D. Kaplan, A. Singurindi, Liquid assisted sintering of SiC powders by MW (2.45 GHz) heating. J. Eur. Ceram. Soc. 22, 1891–1896 (2002)CrossRef
4.
go back to reference E. Volz, A. Roosen, W. Hartung, A. Winnacker, Electrical and thermal conductivity of liquid phase sintered SiC. J. Eur. Ceram. Soc. 21, 2089–2093 (2001)CrossRef E. Volz, A. Roosen, W. Hartung, A. Winnacker, Electrical and thermal conductivity of liquid phase sintered SiC. J. Eur. Ceram. Soc. 21, 2089–2093 (2001)CrossRef
5.
go back to reference K. Kim, K.Y. Lim, Y.W. Kim, M. Lee,W.S. Seo, Electrical resistivity of α-SiC ceramics sintered with Al2O3or AlN additives. J. Euro. Ceram. Soc. 34, 1695–1701 (2014)CrossRef K. Kim, K.Y. Lim, Y.W. Kim, M. Lee,W.S. Seo, Electrical resistivity of α-SiC ceramics sintered with Al2O3or AlN additives. J. Euro. Ceram. Soc. 34, 1695–1701 (2014)CrossRef
6.
go back to reference T. Y. Cho, Y. W. Kim, K. Kim, Thermal, electrical, and mechanical properties of pressureless sinteredsilicon carbide ceramics with yttria-scandia-aluminum nitride. J. Euro. Ceram. Soc. 36, 2659–2665 (2016)CrossRef T. Y. Cho, Y. W. Kim, K. Kim, Thermal, electrical, and mechanical properties of pressureless sinteredsilicon carbide ceramics with yttria-scandia-aluminum nitride. J. Euro. Ceram. Soc. 36, 2659–2665 (2016)CrossRef
7.
go back to reference E. Liden, E. Carlstro, L. Eklund, B. Nyberg, R. Carlsson, Homogeneous distribution of sintering additives in liquid phase sintered silicon carbide. J. Am. Ceram. Soc. 78, 1761–1768 (1995)CrossRef E. Liden, E. Carlstro, L. Eklund, B. Nyberg, R. Carlsson, Homogeneous distribution of sintering additives in liquid phase sintered silicon carbide. J. Am. Ceram. Soc. 78, 1761–1768 (1995)CrossRef
8.
go back to reference E. Kostic, Sintering of silicon carbide in the presence of oxides additives. Powder. Metall. Int. 20, 28–29 (1988). E. Kostic, Sintering of silicon carbide in the presence of oxides additives. Powder. Metall. Int. 20, 28–29 (1988).
9.
go back to reference W. Wang, J. Lian, H. Ru, Pressureless sintered SiC matrix toughened by in situ synthesized, TiB2, Process conditions and fracture toughness. Ceram. Int. 38, 2079–2085 (2012).CrossRef W. Wang, J. Lian, H. Ru, Pressureless sintered SiC matrix toughened by in situ synthesized, TiB2, Process conditions and fracture toughness. Ceram. Int. 38, 2079–2085 (2012).CrossRef
10.
go back to reference L. Falk, Microstructural development during liquid phase sintering of silicon carbide ceramics. J. Eur. Ceram. Soc. 17, 983–994 (1997)CrossRef L. Falk, Microstructural development during liquid phase sintering of silicon carbide ceramics. J. Eur. Ceram. Soc. 17, 983–994 (1997)CrossRef
11.
go back to reference J. She, K. Ueno, Effect of additive content on liquid phase sintering on silicon carbide ceramics. Mat. Res. Bull. 34, 1629–1636 (1999).CrossRef J. She, K. Ueno, Effect of additive content on liquid phase sintering on silicon carbide ceramics. Mat. Res. Bull. 34, 1629–1636 (1999).CrossRef
12.
go back to reference K. Biswas, G. Rixecker, I. Wiedmann, M. Schweizer, G. Upadhyaya, F. Aldinger, Liquid phase sintering and microstructure property relationships of silicon carbide ceramics with oxynitride additives. Mat. Chem. Phys. 67, 180–191 (2001)CrossRef K. Biswas, G. Rixecker, I. Wiedmann, M. Schweizer, G. Upadhyaya, F. Aldinger, Liquid phase sintering and microstructure property relationships of silicon carbide ceramics with oxynitride additives. Mat. Chem. Phys. 67, 180–191 (2001)CrossRef
13.
go back to reference H. Liang, X. Yao, J. Zhang, X. Liu, Z. Huang, Low temperature pressureless sintering of α–SiC with Al2O3 and CeO2 as additives. J. Eur. Ceram. Soc. 34, 831–385 (2014)CrossRef H. Liang, X. Yao, J. Zhang, X. Liu, Z. Huang, Low temperature pressureless sintering of α–SiC with Al2O3 and CeO2 as additives. J. Eur. Ceram. Soc. 34, 831–385 (2014)CrossRef
14.
go back to reference M. Omori, H. Takei, Preparation of pressureless sintered SiC–Y2O3–Al2O3. J. Mater. Sci 23, 3744–3799 (1988)CrossRef M. Omori, H. Takei, Preparation of pressureless sintered SiC–Y2O3–Al2O3. J. Mater. Sci 23, 3744–3799 (1988)CrossRef
15.
go back to reference N. Zhang, H. Ru, Q. Cai, X. Sun, The influence of the molar ratio of SiC–Y2O3–Al2O3 ceramic composite. Mater. Sci. Eng. A, 486, 262–266 (2005). N. Zhang, H. Ru, Q. Cai, X. Sun, The influence of the molar ratio of SiC–Y2O3–Al2O3 ceramic composite. Mater. Sci. Eng. A, 486, 262–266 (2005).
16.
go back to reference M. Mulla, V. Krstic, Low-temperature pressureless sintering of β–silicon carbide with aluminum oxide and yttrium oxide additions. Am. Ceram. Soc. Bull. 70, 439–443 (1991). M. Mulla, V. Krstic, Low-temperature pressureless sintering of β–silicon carbide with aluminum oxide and yttrium oxide additions. Am. Ceram. Soc. Bull. 70, 439–443 (1991).
17.
go back to reference L. Sigl, H. Kleebe, Core/Rim structure of liquid phase sintered silicon carbide. J. Am. Ceram. Soc. 76, 773–776 (1993)CrossRef L. Sigl, H. Kleebe, Core/Rim structure of liquid phase sintered silicon carbide. J. Am. Ceram. Soc. 76, 773–776 (1993)CrossRef
18.
go back to reference P. Padture, In Situ toughened silicon carbide. J. Am. Ceram. Soc. 77,519–523 (1994)CrossRef P. Padture, In Situ toughened silicon carbide. J. Am. Ceram. Soc. 77,519–523 (1994)CrossRef
19.
go back to reference R. Neher, M. Herrmann, K. Brandt, K. Jaenicke Roessler, Z. Pan, O. Fabrichnaya, H. Seifert, Liquid phase formation in the system SiC, Al2O3, Y2O3. J. Eur. Ceram. Soc. 31, 175–181 (2011)CrossRef R. Neher, M. Herrmann, K. Brandt, K. Jaenicke Roessler, Z. Pan, O. Fabrichnaya, H. Seifert, Liquid phase formation in the system SiC, Al2O3, Y2O3. J. Eur. Ceram. Soc. 31, 175–181 (2011)CrossRef
20.
go back to reference J. Zhang, D. Jiang, Q. Lin, Z. Chen, Z. Huang, Gelcasting and pressureless sintering of silicon carbide ceramics using Al2O3–Y2O3 as the sintering additives. J. Eur. Ceram. Soc. 33, 1695–1699 (2013)CrossRef J. Zhang, D. Jiang, Q. Lin, Z. Chen, Z. Huang, Gelcasting and pressureless sintering of silicon carbide ceramics using Al2O3–Y2O3 as the sintering additives. J. Eur. Ceram. Soc. 33, 1695–1699 (2013)CrossRef
21.
go back to reference A. Gubernat, L. Stobierski, P. Labaj P, Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 27, 781–789 (2007)CrossRef A. Gubernat, L. Stobierski, P. Labaj P, Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 27, 781–789 (2007)CrossRef
22.
go back to reference W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961)CrossRef W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961)CrossRef
23.
go back to reference Y. Y Kim, M. Mitomo, J. Lee, Influence of silica content on liquid phase sintering of silicon carbide with yttrium–aluminum garnet. Ceram. Soc. Jpn. 104,816–818 (1996).CrossRef Y. Y Kim, M. Mitomo, J. Lee, Influence of silica content on liquid phase sintering of silicon carbide with yttrium–aluminum garnet. Ceram. Soc. Jpn. 104,816–818 (1996).CrossRef
24.
go back to reference O. Borrero Lopez, A. Pajares, A. Ortiz, F. Guiberteau, Hardness degradation in liquid phase sintered SiC with prolonged sintering. J. Eur. Ceram. Soc. 27, 3359–3364 (2007)CrossRef O. Borrero Lopez, A. Pajares, A. Ortiz, F. Guiberteau, Hardness degradation in liquid phase sintered SiC with prolonged sintering. J. Eur. Ceram. Soc. 27, 3359–3364 (2007)CrossRef
25.
go back to reference S. Ribeiroa, G. Ribeiro, M. Oliveira, Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3+Y2O3, Al2O3+Yb2O3, Al2O3+Y2O3, as Additives a Comparative Study. 2015, Mat. Res. 18, 525–529 (2015).CrossRef S. Ribeiroa, G. Ribeiro, M. Oliveira, Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3+Y2O3, Al2O3+Yb2O3, Al2O3+Y2O3, as Additives a Comparative Study. 2015, Mat. Res. 18, 525–529 (2015).CrossRef
26.
go back to reference Y. Kim, H. Tanaka, M. Mitomo, S. Otani, Influence of powder characteristics on liquid phase sintering of silicon carbide. J. Ceram. Soc. Jpn. 103, 257–261(1995).CrossRef Y. Kim, H. Tanaka, M. Mitomo, S. Otani, Influence of powder characteristics on liquid phase sintering of silicon carbide. J. Ceram. Soc. Jpn. 103, 257–261(1995).CrossRef
27.
go back to reference H. Liang, X. Yao, J. Zhang, X. Liu, Z. Huang, The effect of rare earth oxides on the pressureless liquid phase sintering of α–SiC. J. Eur. Ceram. Soc. 34, 2865–2874 (2014)CrossRef H. Liang, X. Yao, J. Zhang, X. Liu, Z. Huang, The effect of rare earth oxides on the pressureless liquid phase sintering of α–SiC. J. Eur. Ceram. Soc. 34, 2865–2874 (2014)CrossRef
28.
go back to reference J. She, K. Ueno, Densifcation behavior and mechanical properties of pressureless sintered silicon carbide ceramics with alumina and yttria additions. Mat. Chem. Phys. 59,139–142 (1999).CrossRef J. She, K. Ueno, Densifcation behavior and mechanical properties of pressureless sintered silicon carbide ceramics with alumina and yttria additions. Mat. Chem. Phys. 59,139–142 (1999).CrossRef
29.
go back to reference H. liang, X. Yao, H. zhang, X. Liu, Z. Huang, In situ toughening of pressureless liquid phase sintered α-SiC byusingTiO2. Ceram. Int. 40, 10699–10704 (2014).CrossRef H. liang, X. Yao, H. zhang, X. Liu, Z. Huang, In situ toughening of pressureless liquid phase sintered α-SiC byusingTiO2. Ceram. Int. 40, 10699–10704 (2014).CrossRef
30.
go back to reference V. Krstic, Mechanical properties of β–SiC pressureless sintered with Al2O3 additions. Acta. Metal. Mater. 42, 303–308 (1994).CrossRef V. Krstic, Mechanical properties of β–SiC pressureless sintered with Al2O3 additions. Acta. Metal. Mater. 42, 303–308 (1994).CrossRef
31.
go back to reference G. Magnania, L. Beaulardi, L. Pilottia, Properties of liquid phase pressureless sintered silicon carbide obtained without sintering bed. J. Eur. Ceram. Soc. 25, 1619–1627 (2005)CrossRef G. Magnania, L. Beaulardi, L. Pilottia, Properties of liquid phase pressureless sintered silicon carbide obtained without sintering bed. J. Eur. Ceram. Soc. 25, 1619–1627 (2005)CrossRef
32.
go back to reference G. Rixecker, I. Wiedmann, A. Rosinus, F. Aldinger, High temperature effects in the fracture mechanical behavior of silicon carbide liquid phase sintered with AlN—Y 2 O 3 additives. J. Eur. Ceram. Soc. 21, 1013–1019 (2001)CrossRef G. Rixecker, I. Wiedmann, A. Rosinus, F. Aldinger, High temperature effects in the fracture mechanical behavior of silicon carbide liquid phase sintered with AlN—Y 2 O 3 additives. J. Eur. Ceram. Soc. 21, 1013–1019 (2001)CrossRef
33.
go back to reference H. Xu, T. Bhatia, S. Deshpande, N. Padture, A. Ortiz, F. Cumbrera, Microstructural evolution in liquid phase sintered SiC: part I, effect of starting powder. J. Am. Ceram. Soc. 84, 1578–1584 (2001)CrossRef H. Xu, T. Bhatia, S. Deshpande, N. Padture, A. Ortiz, F. Cumbrera, Microstructural evolution in liquid phase sintered SiC: part I, effect of starting powder. J. Am. Ceram. Soc. 84, 1578–1584 (2001)CrossRef
34.
go back to reference J. Sánchez González, A. Ortiz, F. Guiberteau, C. Pascual, Complex impedance spectroscopy study of a liquid phase sintered α–SiC ceramic. J. Eur. Ceram. Soc. 27, 3935–3939 (2007)CrossRef J. Sánchez González, A. Ortiz, F. Guiberteau, C. Pascual, Complex impedance spectroscopy study of a liquid phase sintered α–SiC ceramic. J. Eur. Ceram. Soc. 27, 3935–3939 (2007)CrossRef
Metadata
Title
Fabrication of SiC body by microwave sintering process
Authors
Sara Ahmadbeygi
Mahdi Khodaei
Ali Nemati
Omid Yaghobizadeh
Publication date
27-12-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6239-x

Other articles of this Issue 7/2017

Journal of Materials Science: Materials in Electronics 7/2017 Go to the issue