Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2024

01-02-2024

Facile hydrothermally grown CuO/Co3O4 nanocomposite as an effective electrode material for enhanced supercapacitor applications

Authors: K. Athira, S. Dhanapandian, S. Suthakaran, Manikandan Ayyar

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we developed a transition metal oxide based CuO/Co3O4 nanocomposites (NCs) by a facile hydrothermal method and the synthesized samples have been used as electroactive material for supercapacitor applications. The as-synthesized CuO/Co3O4 NCs were characterized by various techniques such as XRD, FESEM, XPS, etc. FESEM shows the uniform morphology of CuO/Co3O4 (1:3) NCs. Powder XRD confirms the formation of CuO/Co3O4 NCs without any impurities. XPS revealed the chemical state of metallic species. The electrochemical properties studied by CV, GCD and EIS analysis, confirms the pseudocapacitive behaviour with high specific capacitance at low scan rate. The FESEM image of CuO/Co3O4 NCs shows mixture of two different morphologies, spherical and cubical. These specific morphologies provide more active sites for electrochemical redox reactions. For comparison, CuO/Co3O4 NCs with different molar ratios were prepared and electrochemical properties were also analysed. The synergistic effect between metal oxides has enhanced the specific capacity of the nanocomposite. Electrochemical investigation of the synthesized samples and the influence of the molar ratios of CuO to Co3O4 in the composites were examined. The electrode of CuO/Co3O4 NCs exhibited high specific capacitance of 860 F/g at a current density of 2 A/g, which is higher than the previous reports in hydrothermal method. These results highlighted that the outstanding electrochemical performance of CuO/Co3O4 NCs, can be considered as a promising electrode material for electrochemical energy storage supercapacitors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference S. Jayasubramaniyan, S. Balasundari, S.J. Yeom, N. Naresh, T. Rani, E.V. Rapaka, N. Satyanarayana, H.W. Lee, P. Muralidharan, Synthesis of porous CuCo2O4 nanorods/reduced graphene oxide composites via a facile microwave hydrothermal method for high performance hybrid supercapacitor applications. Electrochim. Acta 390, 138865 (2021). https://doi.org/10.1016/j.electacta.2021.138865CrossRef S. Jayasubramaniyan, S. Balasundari, S.J. Yeom, N. Naresh, T. Rani, E.V. Rapaka, N. Satyanarayana, H.W. Lee, P. Muralidharan, Synthesis of porous CuCo2O4 nanorods/reduced graphene oxide composites via a facile microwave hydrothermal method for high performance hybrid supercapacitor applications. Electrochim. Acta 390, 138865 (2021). https://​doi.​org/​10.​1016/​j.​electacta.​2021.​138865CrossRef
7.
9.
go back to reference S. Balasundari, S. Jayasubramaniyan, P. Thangavel, M. Vithiya, T. Rani, P.A. Rayjada, N. Satyanarayana, P. Muralidharan, Heterostructure CuO/Co3O4 nanocomposite: an efficient electrode for supercapacitor and electrocatalyst for oxygen evolution reaction applications. ACS Appl. Eng. Mater. 1, 606–615 (2023). https://doi.org/10.1021/acsaenm.2c00146CrossRef S. Balasundari, S. Jayasubramaniyan, P. Thangavel, M. Vithiya, T. Rani, P.A. Rayjada, N. Satyanarayana, P. Muralidharan, Heterostructure CuO/Co3O4 nanocomposite: an efficient electrode for supercapacitor and electrocatalyst for oxygen evolution reaction applications. ACS Appl. Eng. Mater. 1, 606–615 (2023). https://​doi.​org/​10.​1021/​acsaenm.​2c00146CrossRef
10.
go back to reference Z.L. Goh, N.M. Saidi, N.K. Farhana, S. Bashir, J. Iqbal, K. Ramesh, S. Ramesh, S. Wageh, A. Kalam, Sonochemically synthesized cobalt oxide nanoparticles as an additive for natural polymer iodide electrolyte based dye-sensitized solar cells, sustain. Energy Technol. Asses. 49, 101746 (2022). https://doi.org/10.1016/j.seta.2021.101746CrossRef Z.L. Goh, N.M. Saidi, N.K. Farhana, S. Bashir, J. Iqbal, K. Ramesh, S. Ramesh, S. Wageh, A. Kalam, Sonochemically synthesized cobalt oxide nanoparticles as an additive for natural polymer iodide electrolyte based dye-sensitized solar cells, sustain. Energy Technol. Asses. 49, 101746 (2022). https://​doi.​org/​10.​1016/​j.​seta.​2021.​101746CrossRef
Metadata
Title
Facile hydrothermally grown CuO/Co3O4 nanocomposite as an effective electrode material for enhanced supercapacitor applications
Authors
K. Athira
S. Dhanapandian
S. Suthakaran
Manikandan Ayyar
Publication date
01-02-2024
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2024
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12022-8

Other articles of this Issue 4/2024

Journal of Materials Science: Materials in Electronics 4/2024 Go to the issue