Skip to main content
Top
Published in: Cellulose 7/2019

02-04-2019 | Original Research

Facile preparation of fluorescence-labelled nanofibrillated cellulose (NFC) toward revealing spatial distribution and the interface

Authors: Yongsheng Zhao, Wanbin Dang, Qiong Ma, Yanling Zhu

Published in: Cellulose | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanofibrillated cellulose (NFC) has been widely used in bio-composites and plays a critical role of interface phase in determining the final physical properties. However, it remains difficult to directly observe NFC and its network-like phase within its related composite. Herein, we report a facile and low-cost approach to visualize three-dimensional (3D) distribution of NFC and its interfacial morphology with confocal laser scanning microscopy. In this work, coumarin-3-carboxylic acid (C3) was chemically linked with TEMPO-oxidized nanofibrillated cellulose (TNFC) via amidation process with the aid of ethylenediamine, leading to the formation of fluorescent labelled nanocellulose (TNFC-C3). TNFC-C3 was then compounded with poly(vinyl alcohol) (PVA) as a reinforcing nanofiller because of abundant molecular hydrogen-bonding interactions. The spatial distribution and interfacial bonding characteristics of TNFC in composites were investigated. Fluorescence scanning shows a clear 3D network structure of TNFC-C3 in TNFC-C3/PVA composite. More importantly, TNFC-C3/PVA composites show increased mechanical strength from 7.5 to 23.2 MPa with the increase of TNFC-C3 content, indicating that a small number of C3-grafting result in high-quality of fluorescence resolution without sacrificing molecular interactions and reinforcing effect.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379CrossRef Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379CrossRef
go back to reference Abitbol T, Kam D, Levi-Kalisman Y et al (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933CrossRefPubMed Abitbol T, Kam D, Levi-Kalisman Y et al (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933CrossRefPubMed
go back to reference Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570CrossRef Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570CrossRef
go back to reference Benítez AJ, Lossada F, Zhu B et al (2016) Understanding toughness in bioinspired cellulose nanofibril/polymer nanocomposites. Biomacromol 17:2417–2426CrossRef Benítez AJ, Lossada F, Zhu B et al (2016) Understanding toughness in bioinspired cellulose nanofibril/polymer nanocomposites. Biomacromol 17:2417–2426CrossRef
go back to reference Bian H, Wei L, Lin C et al (2018) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6:4821–4828CrossRef Bian H, Wei L, Lin C et al (2018) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6:4821–4828CrossRef
go back to reference Carosio F, Kochumalayil J, Fina A, Berglund LA (2016) Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv Mater Interfaces 3:1–5CrossRef Carosio F, Kochumalayil J, Fina A, Berglund LA (2016) Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv Mater Interfaces 3:1–5CrossRef
go back to reference Castro C, Zuluaga R, Rojas OJ et al (2015) Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Adv 5:90742–90749CrossRef Castro C, Zuluaga R, Rojas OJ et al (2015) Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Adv 5:90742–90749CrossRef
go back to reference Chen Z, Zhang J, Xiao P et al (2018) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939CrossRef Chen Z, Zhang J, Xiao P et al (2018) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939CrossRef
go back to reference Fatona A, Berry RM, Brook MA, Moran-Mirabal JM (2018) Versatile surface modification of cellulose fibers and cellulose nanocrystals through modular triazinyl chemistry. Chem Mater 30:2424–2435CrossRef Fatona A, Berry RM, Brook MA, Moran-Mirabal JM (2018) Versatile surface modification of cellulose fibers and cellulose nanocrystals through modular triazinyl chemistry. Chem Mater 30:2424–2435CrossRef
go back to reference Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoci A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446CrossRef Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoci A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446CrossRef
go back to reference González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefPubMed Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefPubMed
go back to reference Henriksson M, Berglund L, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef Henriksson M, Berglund L, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef
go back to reference Huang J, Wang D, Lu Y et al (2013) Surface zwitterionically functionalized PVA-co-PE nanofiber materials by click chemistry. RSC Adv 3:20922–20929CrossRef Huang J, Wang D, Lu Y et al (2013) Surface zwitterionically functionalized PVA-co-PE nanofiber materials by click chemistry. RSC Adv 3:20922–20929CrossRef
go back to reference Huo J, Zheng Y, Pang S, Wang Q (2013) Assembly of novel Tb3+/Eu3+ sensitized cellulose gels and their emission behaviors. Cellulose 20:841–848CrossRef Huo J, Zheng Y, Pang S, Wang Q (2013) Assembly of novel Tb3+/Eu3+ sensitized cellulose gels and their emission behaviors. Cellulose 20:841–848CrossRef
go back to reference Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef
go back to reference Lagerwall JPF, Schütz C, Salajkova M et al (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12CrossRef Lagerwall JPF, Schütz C, Salajkova M et al (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12CrossRef
go back to reference Li Z, Shen J, Abdalla I et al (2017) Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 36:341–348CrossRef Li Z, Shen J, Abdalla I et al (2017) Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 36:341–348CrossRef
go back to reference Li Z, Zhu M, Qiu Q et al (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733CrossRef Li Z, Zhu M, Qiu Q et al (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733CrossRef
go back to reference Liu Y, Luo PG, Sun Y (2015) Carbon “quantum” dots for fluorescence labeling of Cells. ACS Appl Mater Interfaces 7:19439–19445CrossRefPubMed Liu Y, Luo PG, Sun Y (2015) Carbon “quantum” dots for fluorescence labeling of Cells. ACS Appl Mater Interfaces 7:19439–19445CrossRefPubMed
go back to reference Liu C, Shao Z, Wang J et al (2016a) Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries. RSC Adv 6:97912–97920CrossRef Liu C, Shao Z, Wang J et al (2016a) Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries. RSC Adv 6:97912–97920CrossRef
go back to reference Liu L, Li L, Qing Y et al (2016b) Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils. Polym Chem 7:7142–7151CrossRef Liu L, Li L, Qing Y et al (2016b) Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils. Polym Chem 7:7142–7151CrossRef
go back to reference Lu Z, Si L, Dang W, Zhao Y (2018) Transparent and mechanically robust poly(para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos Part A Appl Sci Manuf 115:321–330CrossRef Lu Z, Si L, Dang W, Zhao Y (2018) Transparent and mechanically robust poly(para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos Part A Appl Sci Manuf 115:321–330CrossRef
go back to reference Mashkour M, Kimura T, Kimura F et al (2014) Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque. Biomacromol 15:60–65CrossRef Mashkour M, Kimura T, Kimura F et al (2014) Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque. Biomacromol 15:60–65CrossRef
go back to reference Meesorn W, Shirole A, Vanhecke D et al (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374CrossRef Meesorn W, Shirole A, Vanhecke D et al (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374CrossRef
go back to reference Oh SY, Il YD, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed Oh SY, Il YD, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed
go back to reference Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefPubMed Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefPubMed
go back to reference Peng H, Wang S, Xu H, Hao X (2017) Preparation, properties and formation mechanism of cellulose/polyvinyl alcohol bio-composite hydrogel membranes. N J Chem 41:6564–6573CrossRef Peng H, Wang S, Xu H, Hao X (2017) Preparation, properties and formation mechanism of cellulose/polyvinyl alcohol bio-composite hydrogel membranes. N J Chem 41:6564–6573CrossRef
go back to reference Saito T (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef Saito T (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef
go back to reference Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644CrossRef Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644CrossRef
go back to reference Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049CrossRefPubMed Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049CrossRefPubMed
go back to reference Sun F, Nordli HR, Pukstad B et al (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384CrossRefPubMed Sun F, Nordli HR, Pukstad B et al (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384CrossRefPubMed
go back to reference Tang H, Butchosa N, Zhou Q (2015) A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol). Adv Mater 27:2070–2076CrossRefPubMed Tang H, Butchosa N, Zhou Q (2015) A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol). Adv Mater 27:2070–2076CrossRefPubMed
go back to reference Wang LY, Wang MJ (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 4:2830–2837CrossRef Wang LY, Wang MJ (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 4:2830–2837CrossRef
go back to reference Wang Y, Zhang Y, Liu B (2010) Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity. Anal Chem 82:8604–8610CrossRefPubMed Wang Y, Zhang Y, Liu B (2010) Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity. Anal Chem 82:8604–8610CrossRefPubMed
go back to reference Wang J, Cheng Q, Lin L et al (2014) Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745CrossRefPubMed Wang J, Cheng Q, Lin L et al (2014) Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745CrossRefPubMed
go back to reference Weishaupt R, Siqueira G, Schubert M et al (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromol 16:3640–3650CrossRef Weishaupt R, Siqueira G, Schubert M et al (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromol 16:3640–3650CrossRef
go back to reference Xu S, Yu W, Jing M et al (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121:2108–2117CrossRef Xu S, Yu W, Jing M et al (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121:2108–2117CrossRef
go back to reference Zammarano M, Maupin PH, Sung L et al (2011) Revealing the interface in polymer nanocomposites. ACS Nano 5:3391–3399CrossRefPubMed Zammarano M, Maupin PH, Sung L et al (2011) Revealing the interface in polymer nanocomposites. ACS Nano 5:3391–3399CrossRefPubMed
go back to reference Zhang H, Liu J, Guan M et al (2018) Nanofibrillated cellulose (NFC) as a pore size mediator in the preparation of thermally resistant separators for lithium ion batteries. ACS Sustain Chem Eng 6:4838–4844CrossRef Zhang H, Liu J, Guan M et al (2018) Nanofibrillated cellulose (NFC) as a pore size mediator in the preparation of thermally resistant separators for lithium ion batteries. ACS Sustain Chem Eng 6:4838–4844CrossRef
go back to reference Zhao Y, Liu Z, Su B et al (2015) Property enhancement of PP-EPDM thermoplastic vulcanizates via shear-induced break-up of nano-rubber aggregates and molecular orientation of the matrix. Polymer 63:170–178CrossRef Zhao Y, Liu Z, Su B et al (2015) Property enhancement of PP-EPDM thermoplastic vulcanizates via shear-induced break-up of nano-rubber aggregates and molecular orientation of the matrix. Polymer 63:170–178CrossRef
go back to reference Zhao Y, Si L, Wang L et al (2017) Tuning the mechanical properties of weakly phase-separated olefin block copolymer by establishing co-crystallization structure with the aid of linear polyethylene: the dependence on molecular chain length. CrystEngComm 19:2884–2893CrossRef Zhao Y, Si L, Wang L et al (2017) Tuning the mechanical properties of weakly phase-separated olefin block copolymer by establishing co-crystallization structure with the aid of linear polyethylene: the dependence on molecular chain length. CrystEngComm 19:2884–2893CrossRef
go back to reference Zhao Y, Dang W, Lu Z et al (2018a) Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO2 and nanofibrillated cellulose. Cellulose 25:3913–3925CrossRef Zhao Y, Dang W, Lu Z et al (2018a) Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO2 and nanofibrillated cellulose. Cellulose 25:3913–3925CrossRef
go back to reference Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRef Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRef
Metadata
Title
Facile preparation of fluorescence-labelled nanofibrillated cellulose (NFC) toward revealing spatial distribution and the interface
Authors
Yongsheng Zhao
Wanbin Dang
Qiong Ma
Yanling Zhu
Publication date
02-04-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 7/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02404-1

Other articles of this Issue 7/2019

Cellulose 7/2019 Go to the issue