Skip to main content
Top
Published in: Colloid and Polymer Science 1/2023

05-11-2022 | Original Contribution

Facile preparation of stretchable and multifunctional ionic gels via frontal polymerization of polymerizable ternary deep eutectic monomers with a long pot life

Authors: Shengfang Li, Yang Jiang, Yongfa Zhu, Jifang Fu, Shilin Yan

Published in: Colloid and Polymer Science | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The weak or brittle mechanical properties, icing and water evaporation under very low or high temperatures, the complex preparation process and high costs limited the application of ionic hydrogels and ionogels. Here, we designed and prepared stretchable and multifunctional ionic gels via frontal polymerization (FP) of polymerizable ternary deep eutectic monomers (DEMs) with a long pot life. The highly stretchable ionic gels can be obtained by altering the molar ratio of polymerizable and non-polymerizable hydrogen bond donors (HBDs), acrylamide (AM) and urea (U), together with hydrogen bond acceptor (HBA), choline chloride (ChCl), respectively. FTIR and 1H-NMR spectra were used to characterize the chemical structure of DEM. Preliminary experiment indicated the pot lives of ternary DEM were much longer than that of the corresponding binary DEM without U. The obtained DEMs were investigated for preparing multifunctional ionic gels by FP. As the molar ratio of U to M changed from 0.7:1.3 to 1.3:0.7, the tensile and compressive strength of ionic gel decreased from 225 KPa and 3129 KPa to 24.7 KPa and 210 KPa, respectively. However, the elongation at break of the ionic gel increased from 283% to 680%. After FP, the DES composed of U and ChCl embedded in the cross-linked PAM not only acted as a plasticizer, but also as a conductive and anti-freezing agent of ionic gels. This work provides a rapid, green and low energy consumption method to construct stretchable, conductive, self-healing and anti-freezing ionic gels, which can be used in flexible bio-electronic devices in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang L, Jiang D, Dong T, Das R, Pan D, Sun C, Wu Z, Zhang Q, Liu C, Guo Z (2020) Overview of ionogels in flexible electronics. Chem Rec 20:948–967CrossRef Zhang L, Jiang D, Dong T, Das R, Pan D, Sun C, Wu Z, Zhang Q, Liu C, Guo Z (2020) Overview of ionogels in flexible electronics. Chem Rec 20:948–967CrossRef
2.
go back to reference Hoffmann M, Butzelaar AJ, Iacob C, Theato M, Wilhelm M (2022) Ionogels as polymer electrolytes for lithium-metal batteries: comparison of poly(ethylene glycol) diacrylate and an imidazolium-based ionic liquid crosslinker. ACS Appl Polym Mater 4:2794–2805CrossRef Hoffmann M, Butzelaar AJ, Iacob C, Theato M, Wilhelm M (2022) Ionogels as polymer electrolytes for lithium-metal batteries: comparison of poly(ethylene glycol) diacrylate and an imidazolium-based ionic liquid crosslinker. ACS Appl Polym Mater 4:2794–2805CrossRef
3.
go back to reference Tamate R, Watanabe M (2020) Recent progress in self-healable ion gels. Sci Technol Adv Mat 21:388–401CrossRef Tamate R, Watanabe M (2020) Recent progress in self-healable ion gels. Sci Technol Adv Mat 21:388–401CrossRef
4.
5.
go back to reference Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, Watanabe M (2018) Self-healing micellar ion gels based on multiple hydrogen Bonding. Adv Mater 30:1802792CrossRef Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, Watanabe M (2018) Self-healing micellar ion gels based on multiple hydrogen Bonding. Adv Mater 30:1802792CrossRef
6.
go back to reference Ruiz-Olles J, Slavik P, Whitelaw NK, Smith DK (2019) Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity. Angew Chem Int Ed 58:4173–4178CrossRef Ruiz-Olles J, Slavik P, Whitelaw NK, Smith DK (2019) Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity. Angew Chem Int Ed 58:4173–4178CrossRef
7.
go back to reference Zhao W, Jiang M, Wang W, Liu S, Huang W, Zhao Q (2021) Flexible transparent supercapacitors: materials and devices. Adv Funct Mater 31:2009136CrossRef Zhao W, Jiang M, Wang W, Liu S, Huang W, Zhao Q (2021) Flexible transparent supercapacitors: materials and devices. Adv Funct Mater 31:2009136CrossRef
8.
go back to reference Marr PC, Marr AC (2016) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18:105–128CrossRef Marr PC, Marr AC (2016) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18:105–128CrossRef
9.
go back to reference Li T, Wang Y, Li S, Liu X, Sun J (2020) Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater 32:2002706CrossRef Li T, Wang Y, Li S, Liu X, Sun J (2020) Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater 32:2002706CrossRef
10.
go back to reference Smith E, Abbott A (2014) Ryder, K. Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082CrossRef Smith E, Abbott A (2014) Ryder, K. Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082CrossRef
11.
go back to reference Clarke C, Tu W, Levers O, Brohl A, Hallett J (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800CrossRef Clarke C, Tu W, Levers O, Brohl A, Hallett J (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800CrossRef
12.
go back to reference Zhang Q, Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146CrossRef Zhang Q, Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146CrossRef
13.
go back to reference Zhang T, Doert T, Wang H, Zhang S, Ruck M (2021) Inorganic synthesis based on reactions of ionic liquids and deep eutectic solvents. Angew Chem Int Ed 60:22148–22165CrossRef Zhang T, Doert T, Wang H, Zhang S, Ruck M (2021) Inorganic synthesis based on reactions of ionic liquids and deep eutectic solvents. Angew Chem Int Ed 60:22148–22165CrossRef
14.
go back to reference Yuan Z, Liu H, Yong WF, She Q, Esteban J (2022) Status and advances of deep eutectic solvents for metal separation and recovery. Green Chem 24:1895–1929CrossRef Yuan Z, Liu H, Yong WF, She Q, Esteban J (2022) Status and advances of deep eutectic solvents for metal separation and recovery. Green Chem 24:1895–1929CrossRef
15.
go back to reference Hooshmand SE, Afshari R, Ramón DJ, Varma RS (2020) Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chem 22:3668–3692CrossRef Hooshmand SE, Afshari R, Ramón DJ, Varma RS (2020) Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chem 22:3668–3692CrossRef
16.
go back to reference Wu J, Liang Q, Yu X, Lü Q, Ma L, Qin X, Chen G, Li B (2021) Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Adv Funct Mater 31:2011102CrossRef Wu J, Liang Q, Yu X, Lü Q, Ma L, Qin X, Chen G, Li B (2021) Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Adv Funct Mater 31:2011102CrossRef
17.
go back to reference Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336CrossRef Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336CrossRef
18.
go back to reference Li R, Chen G, Fan T, Zhang K, He M (2020) Transparent conductive elastomers with excellent autonomous self-healing capability in harsh organic solvent environments. J Mater Chem A 8:5056–5061CrossRef Li R, Chen G, Fan T, Zhang K, He M (2020) Transparent conductive elastomers with excellent autonomous self-healing capability in harsh organic solvent environments. J Mater Chem A 8:5056–5061CrossRef
19.
go back to reference Bu X, Ge Y, Wang L, Wu L, Ma X, Lu D (2020) Design of highly stretchable deep eutectic solvent-based ionic gel electrolyte with high ionic conductivity by the addition of zwitterion ion dissociators for flexible supercapacitor. Polym Eng Sci 61:154–166CrossRef Bu X, Ge Y, Wang L, Wu L, Ma X, Lu D (2020) Design of highly stretchable deep eutectic solvent-based ionic gel electrolyte with high ionic conductivity by the addition of zwitterion ion dissociators for flexible supercapacitor. Polym Eng Sci 61:154–166CrossRef
20.
go back to reference Li R, Zhang K, Chen G, Su B, He M (2021) Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions. Chem Mater 33:5189–5196CrossRef Li R, Zhang K, Chen G, Su B, He M (2021) Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions. Chem Mater 33:5189–5196CrossRef
21.
go back to reference Li R, Fan T, Chen G, Zhang K, Su B, Tian J, He M (2020) Autonomous self-healing, antifreezing, and transparent conductive elastomers. Chem Mater 32:874–881CrossRef Li R, Fan T, Chen G, Zhang K, Su B, Tian J, He M (2020) Autonomous self-healing, antifreezing, and transparent conductive elastomers. Chem Mater 32:874–881CrossRef
22.
go back to reference Wang J, Ma Z, Wang Y, Shao J, Yan L (2021) Ultra-stretchable, self-healing, conductive, and transparent PAA/DES ionic Gel. Macromol Rapid Commun 42:2000445CrossRef Wang J, Ma Z, Wang Y, Shao J, Yan L (2021) Ultra-stretchable, self-healing, conductive, and transparent PAA/DES ionic Gel. Macromol Rapid Commun 42:2000445CrossRef
23.
go back to reference Wang J, Deng Y, Ma Z, Wang Y, Zhang S, Yan L (2021) Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. Green Chem 23:5120CrossRef Wang J, Deng Y, Ma Z, Wang Y, Zhang S, Yan L (2021) Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. Green Chem 23:5120CrossRef
24.
go back to reference Li X, Liu J, Guo Q, Zhang X, Tian M (2022) Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 18:2201012CrossRef Li X, Liu J, Guo Q, Zhang X, Tian M (2022) Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 18:2201012CrossRef
25.
go back to reference Petko F, Świeży A, Ortyl J (2021) Photoinitiating systems and kinetics of frontal photopolymerization processes-the prospects for efficient preparation of composites and thick 3D structures. Polym Chem 12:4593–4612CrossRef Petko F, Świeży A, Ortyl J (2021) Photoinitiating systems and kinetics of frontal photopolymerization processes-the prospects for efficient preparation of composites and thick 3D structures. Polym Chem 12:4593–4612CrossRef
26.
go back to reference Li S, Chen Y, Zhu Y, Wang Z, Fu J, Yan S (2022) Rapid preparation of conductive self-healing ionic gels with tunable mechanical properties by frontal polymerization of deep eutectic monomers. Colloid Polym Sci 300:989–998CrossRef Li S, Chen Y, Zhu Y, Wang Z, Fu J, Yan S (2022) Rapid preparation of conductive self-healing ionic gels with tunable mechanical properties by frontal polymerization of deep eutectic monomers. Colloid Polym Sci 300:989–998CrossRef
27.
go back to reference Li Q, Shen H, Liu C, Wang C, Zhu L, Chen S (2022) Advances in frontal polymerization strategy: from fundamentals to applications. Prog Polym Sci 127:101514CrossRef Li Q, Shen H, Liu C, Wang C, Zhu L, Chen S (2022) Advances in frontal polymerization strategy: from fundamentals to applications. Prog Polym Sci 127:101514CrossRef
28.
go back to reference Robertson I, Yourdkhani M, Centellas P, Aw J, Ivanoff D, Goli E, Lloyd E, Dean L, Sottos N, Geubelle P, Moore J, White S (2018) Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557:223–227CrossRef Robertson I, Yourdkhani M, Centellas P, Aw J, Ivanoff D, Goli E, Lloyd E, Dean L, Sottos N, Geubelle P, Moore J, White S (2018) Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557:223–227CrossRef
29.
go back to reference Pojman JA, Ilyashenko VM, Khan AM (1996) Free-radical frontal polymerization: self-propagating thermal reaction waves. J Chem Soc Faraday Trans 92:2825–2837CrossRef Pojman JA, Ilyashenko VM, Khan AM (1996) Free-radical frontal polymerization: self-propagating thermal reaction waves. J Chem Soc Faraday Trans 92:2825–2837CrossRef
30.
go back to reference Pojman JA (2012) Frontal polymerization: in polymer science: a comprehensive reference. K Matyjaszewski, M Möller. Ed. Elsevier BV: Amsterdam, 957–980 Pojman JA (2012) Frontal polymerization: in polymer science: a comprehensive reference. K Matyjaszewski, M Möller. Ed. Elsevier BV: Amsterdam, 957–980
31.
go back to reference Pojman JA (2022) Cure-on-demand composites by frontal polymerization: in reference module in materials science and materials engineering. Ed. Elsevier 1–17 Pojman JA (2022) Cure-on-demand composites by frontal polymerization: in reference module in materials science and materials engineering. Ed. Elsevier 1–17
32.
go back to reference Li S, Yan S (2016) Rapid synthesis of macroporous graphene oxide/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels with pH-sensitive behavior by frontal polymerization. RSC Adv 6:33426–33432CrossRef Li S, Yan S (2016) Rapid synthesis of macroporous graphene oxide/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels with pH-sensitive behavior by frontal polymerization. RSC Adv 6:33426–33432CrossRef
33.
go back to reference Mota-Morales JD, Gutiérrez MC, Ferrer ML, Sánchez-Leijia RJ, Carranza A, Pojman JA, Monte FD, Luna-Bárcenas G (2018) Free-radical polymerizations of and in deep eutectic solvents:green synthesis of functional materials. Prog Polym Sci 78:139–153CrossRef Mota-Morales JD, Gutiérrez MC, Ferrer ML, Sánchez-Leijia RJ, Carranza A, Pojman JA, Monte FD, Luna-Bárcenas G (2018) Free-radical polymerizations of and in deep eutectic solvents:green synthesis of functional materials. Prog Polym Sci 78:139–153CrossRef
34.
go back to reference Mota-Morales JD, Gutiérrez MC, Sanchez IC, Luna-Bárcenas G, Monte DF (2011) Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium. Chem Commun 47:5328–5330CrossRef Mota-Morales JD, Gutiérrez MC, Sanchez IC, Luna-Bárcenas G, Monte DF (2011) Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium. Chem Commun 47:5328–5330CrossRef
35.
go back to reference Chen Y, Li S, Yan S (2021) Starch as a reinforcement agent for poly(ionic liquid) hydrogels from deep eutectic solvent via frontal polymerization. Carbohyd Polym 263:117996CrossRef Chen Y, Li S, Yan S (2021) Starch as a reinforcement agent for poly(ionic liquid) hydrogels from deep eutectic solvent via frontal polymerization. Carbohyd Polym 263:117996CrossRef
36.
go back to reference Isik M, Ruiperez F, Sardon H, Gonzalez A, Zulfiqar S, Mecerreyes D (2016) Innovative poly(Ionic Liquid)s by the polymerization of deep eutectic monomers. Macromol Rapid Commun 37:1135–1142CrossRef Isik M, Ruiperez F, Sardon H, Gonzalez A, Zulfiqar S, Mecerreyes D (2016) Innovative poly(Ionic Liquid)s by the polymerization of deep eutectic monomers. Macromol Rapid Commun 37:1135–1142CrossRef
37.
go back to reference Wierzbicki Z, Mielczarek K, Topa-Skwarczynska M, Mokrzynski K, Ortyl J, Bednarz Z (2021) Visible light-induced photopolymerization of Deep Eutectic Monomers, based on methacrylic acid and tetrabutylammonium salts with different anion structures. Eur Polym J 161:110836CrossRef Wierzbicki Z, Mielczarek K, Topa-Skwarczynska M, Mokrzynski K, Ortyl J, Bednarz Z (2021) Visible light-induced photopolymerization of Deep Eutectic Monomers, based on methacrylic acid and tetrabutylammonium salts with different anion structures. Eur Polym J 161:110836CrossRef
38.
go back to reference Nahar Y, Horne J, Truong V, Bissember AC, Thickett SC (2020) Preparation of thermoresponsive hydrogels via polymerizable deep eutectic monomer solvents. Polym Chem 12:254–264CrossRef Nahar Y, Horne J, Truong V, Bissember AC, Thickett SC (2020) Preparation of thermoresponsive hydrogels via polymerizable deep eutectic monomer solvents. Polym Chem 12:254–264CrossRef
39.
go back to reference Isik M, Zulfiqar S, Edhaim F, Ruiperez F, Rothenberger A, Mecerreyes D (2016) Sustainable poly(ionic liquids) for CO2 capture based on deep eutectic monomers. ACS Sustain Chem 4:7200–7208CrossRef Isik M, Zulfiqar S, Edhaim F, Ruiperez F, Rothenberger A, Mecerreyes D (2016) Sustainable poly(ionic liquids) for CO2 capture based on deep eutectic monomers. ACS Sustain Chem 4:7200–7208CrossRef
40.
go back to reference Ajino K, Torii A, Ogawa H, Mory H (2020) Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea. Polymer 204:122803CrossRef Ajino K, Torii A, Ogawa H, Mory H (2020) Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea. Polymer 204:122803CrossRef
41.
go back to reference Jiang Y, Li S, Chen Y, Yan S, Tao M, Wen P (2020) Facile and green preparation of superfast responsive macroporous polyacrylamide hydrogels by frontal polymerization of polymerizable deep eutectic monomers. Ind Eng Chem Res 59:1526–1533CrossRef Jiang Y, Li S, Chen Y, Yan S, Tao M, Wen P (2020) Facile and green preparation of superfast responsive macroporous polyacrylamide hydrogels by frontal polymerization of polymerizable deep eutectic monomers. Ind Eng Chem Res 59:1526–1533CrossRef
42.
go back to reference Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70–71 Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70–71
43.
go back to reference Chen C, Greaves TL, Warr GG, Atkin R (2017) Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chem Commun 53:2375–2377CrossRef Chen C, Greaves TL, Warr GG, Atkin R (2017) Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chem Commun 53:2375–2377CrossRef
44.
go back to reference Fazende KF, Phachansitthi M, Mota-Morales JD, Pojman JA (2017) Frontal polymerization of deep eutectic solvents composed of acrylic and methacrylic acids. J Polym Sci Part A Polym Chem 55:4046–4050CrossRef Fazende KF, Phachansitthi M, Mota-Morales JD, Pojman JA (2017) Frontal polymerization of deep eutectic solvents composed of acrylic and methacrylic acids. J Polym Sci Part A Polym Chem 55:4046–4050CrossRef
45.
go back to reference Zdanowicza M, Johansson C (2016) Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohyd Polym 263:117996 Zdanowicza M, Johansson C (2016) Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohyd Polym 263:117996
46.
go back to reference Wu T, Dai R, Shan Z, Chen H, Woo MW, Yi J (2022) High efficient crosslinking of gelatin and preparation of its excellent flexible composite film using deep eutectic solvent. Process Biochem 118:32–40CrossRef Wu T, Dai R, Shan Z, Chen H, Woo MW, Yi J (2022) High efficient crosslinking of gelatin and preparation of its excellent flexible composite film using deep eutectic solvent. Process Biochem 118:32–40CrossRef
47.
go back to reference Peng H, Xin Y, Xu J, Liu H, Zhang J (2019) Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater Horiz 6:618–625CrossRef Peng H, Xin Y, Xu J, Liu H, Zhang J (2019) Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater Horiz 6:618–625CrossRef
48.
go back to reference Ma C, Guo Y, Li D, Zong J, Ji X, Liu C, Lu X (2016) Molar enthalpy of mixing for choline chloride/urea deep eutectic solvent + water system. J Chem Eng Data 61:4172–4177CrossRef Ma C, Guo Y, Li D, Zong J, Ji X, Liu C, Lu X (2016) Molar enthalpy of mixing for choline chloride/urea deep eutectic solvent + water system. J Chem Eng Data 61:4172–4177CrossRef
49.
go back to reference Moradi M, Jouyban A (2022) Study of naproxen dissolution in the mixtures of a choline-based deep eutectic solvent + water at different temperatures. J Mol Liq 345:117023CrossRef Moradi M, Jouyban A (2022) Study of naproxen dissolution in the mixtures of a choline-based deep eutectic solvent + water at different temperatures. J Mol Liq 345:117023CrossRef
50.
go back to reference Tian Y, Sun DW, Zhu Z (2021) Development of natural deep eutectic solvents (NADESs) as anti-freezing agents for the frozen food industry: water-tailoring effects, anti-freezing mechanisms and applications. Food Chem 371:131150CrossRef Tian Y, Sun DW, Zhu Z (2021) Development of natural deep eutectic solvents (NADESs) as anti-freezing agents for the frozen food industry: water-tailoring effects, anti-freezing mechanisms and applications. Food Chem 371:131150CrossRef
Metadata
Title
Facile preparation of stretchable and multifunctional ionic gels via frontal polymerization of polymerizable ternary deep eutectic monomers with a long pot life
Authors
Shengfang Li
Yang Jiang
Yongfa Zhu
Jifang Fu
Shilin Yan
Publication date
05-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 1/2023
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-022-05035-4

Other articles of this Issue 1/2023

Colloid and Polymer Science 1/2023 Go to the issue

Premium Partners