Skip to main content
Top
Published in: Journal of Electronic Materials 6/2021

30-03-2021 | Original Research Article

Facile Synthesis of Fe3O4/ZnO Nanocomposite: Applications to Photocatalytic and Antibacterial Activities

Authors: M. Shashank, H. S. Bhojya Naik, G. Nagaraju, Rangappa S. Keri, M. Madhukara Naik, K. Lingaraju

Published in: Journal of Electronic Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the current work, we have reported the preparation of Fe3O4/ZnO nanocomposite (NC) via co-precipitation. The prepared Fe3O4/ZnO nanocomposite were characterized by x-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive x-ray analysis (EDAX), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, ultraviolet-diffuse reflectance spectroscopy (UV-DRS) and photoluminescence spectroscopy (PL). From the x-ray diffraction pattern, the average crystallite size of Fe3O4/ZnO NC was found to be 13 nm. UV-DRS showed an energy band gap of 2.3 eV for the prepared sample. From the Brunauer–Emmett–Teller (BET) surface area analysis, total pore volume (VP) and mean pore diameter (rp) were found to be 12.647 m2g−1, 0.024125 cm3g−1 and 7.6302 nm. The functional groups and metal to oxygen bonding in Fe3O4/ZnO NC were observed in FT-IR. SEM and TEM micrograph of Fe3O4/ZnO NC show flake- and grain-like structures, and the luminescence spectrum shows blue emission. The photocatalytic activity of Fe3O4/ZnO NC was examined using industrial effluent dyes such as Evans blue (90% in 150 min) and Rhodamine B (RB) (99% in 150 min) under UV light irradiation. Further, Fe3O4/ZnO NC also showed a superior zone of inhibition against pathogenic bacterial strains such as Escherichia coli and Staphylococcus aureus by agar well diffusion compared to Fe3O4 and ZnO nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A.J.M.S. Stephen, Mater. Sci. Eng., C 33, 91 (2013).CrossRef R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A.J.M.S. Stephen, Mater. Sci. Eng., C 33, 91 (2013).CrossRef
2.
go back to reference K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 29, 5459 (2018). K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 29, 5459 (2018).
3.
go back to reference R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, and J. Ding, Powder Technol. 189, 426 (2009).CrossRef R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, and J. Ding, Powder Technol. 189, 426 (2009).CrossRef
4.
5.
go back to reference Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, and J.O. Kim, J. Biomed. Mater. Res. 52, 662 (2000).CrossRef Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, and J.O. Kim, J. Biomed. Mater. Res. 52, 662 (2000).CrossRef
6.
go back to reference J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, and M.R. Hosseini-Tabatabaei, J. Mater. Sci.: Mater. Electron. 26, 9591 (2015). J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, and M.R. Hosseini-Tabatabaei, J. Mater. Sci.: Mater. Electron. 26, 9591 (2015).
7.
8.
go back to reference S. Aslam, J. Zeng, F. Subhan, M. Li, F. Lyu, Y. Li, and Z. Yan, J. Colloid Interface Sci. 505, 186 (2017).CrossRef S. Aslam, J. Zeng, F. Subhan, M. Li, F. Lyu, Y. Li, and Z. Yan, J. Colloid Interface Sci. 505, 186 (2017).CrossRef
9.
go back to reference J. Wang, J. Yang, X. Li, D. Wang, B. Wei, H. Song, X. Li, and S. Fu, Physica E 75, 66 (2016).CrossRef J. Wang, J. Yang, X. Li, D. Wang, B. Wei, H. Song, X. Li, and S. Fu, Physica E 75, 66 (2016).CrossRef
10.
go back to reference S.K. Rajabi, and S.H. Sohrabnezhad, Microporous Mesoporous Mater. 242, 136 (2017).CrossRef S.K. Rajabi, and S.H. Sohrabnezhad, Microporous Mesoporous Mater. 242, 136 (2017).CrossRef
12.
go back to reference M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, and S.K. Rashmi, J. Mater. Sci.: Mater. Electron. 29, 20395 (2018). M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, and S.K. Rashmi, J. Mater. Sci.: Mater. Electron. 29, 20395 (2018).
13.
go back to reference C. Perez, Acta Biol. Med. Exp. 15, 113 (1990). C. Perez, Acta Biol. Med. Exp. 15, 113 (1990).
14.
go back to reference X. Sun, G. Ma, X. Lv, M. Sui, H. Li, F. Wu, and J. Wang, Materials 11, 780 (2018).CrossRef X. Sun, G. Ma, X. Lv, M. Sui, H. Li, F. Wu, and J. Wang, Materials 11, 780 (2018).CrossRef
15.
go back to reference S.D. Kulkarni, S.M. Kumbar, S.G. Menon, K.S. Choudhari, and C. Santhosh, Adv. Sci. Lett. 23, 1724 (2017).CrossRef S.D. Kulkarni, S.M. Kumbar, S.G. Menon, K.S. Choudhari, and C. Santhosh, Adv. Sci. Lett. 23, 1724 (2017).CrossRef
16.
17.
go back to reference R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, and D.G. Wei, Mater. Res. Bull. 43, 2457 (2008).CrossRef R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, and D.G. Wei, Mater. Res. Bull. 43, 2457 (2008).CrossRef
18.
go back to reference X. Huang, J. Lu, D. Yue, Y. Fan, C. Yi, X. Wang, M. Zhang, and J. Pan, Nanotechnology 26, 125101 (2015).CrossRef X. Huang, J. Lu, D. Yue, Y. Fan, C. Yi, X. Wang, M. Zhang, and J. Pan, Nanotechnology 26, 125101 (2015).CrossRef
19.
20.
go back to reference Y.-J. Chen, F. Zhang, G.-G. Zhao, X.-Y. Fang, H.-B. Jin, P. Gao, C.-L. Zhu, M.-S. Cao, and G. Xiao, J. Phys. Chem. C 114, 9239 (2010).CrossRef Y.-J. Chen, F. Zhang, G.-G. Zhao, X.-Y. Fang, H.-B. Jin, P. Gao, C.-L. Zhu, M.-S. Cao, and G. Xiao, J. Phys. Chem. C 114, 9239 (2010).CrossRef
21.
go back to reference M. Dehghani-Dashtabi, H. Hekmatara, and J. Seyed-Yazdi, Phys. B 553, 11 (2019).CrossRef M. Dehghani-Dashtabi, H. Hekmatara, and J. Seyed-Yazdi, Phys. B 553, 11 (2019).CrossRef
22.
go back to reference C. Karunakaran, P. Vinayagamoorthy, and J. Jayabharathi, Langmuir 30, 15031 (2014).CrossRef C. Karunakaran, P. Vinayagamoorthy, and J. Jayabharathi, Langmuir 30, 15031 (2014).CrossRef
23.
go back to reference V. Panwar, P. Kumar, A. Bansal, S.S. Ray, and S.L. Jain, Appl. Catal. A 498, 25 (2015).CrossRef V. Panwar, P. Kumar, A. Bansal, S.S. Ray, and S.L. Jain, Appl. Catal. A 498, 25 (2015).CrossRef
24.
go back to reference X. Zhang, J. Wu, G. Meng, X. Guo, C. Liu, and Z. Liu, Appl. Surf. Sci. 366, 486 (2016).CrossRef X. Zhang, J. Wu, G. Meng, X. Guo, C. Liu, and Z. Liu, Appl. Surf. Sci. 366, 486 (2016).CrossRef
25.
go back to reference A. Radoń, A. Drygała, Ł Hawełek, and D. Łukowiec, Mater. Charact. 131, 148 (2017).CrossRef A. Radoń, A. Drygała, Ł Hawełek, and D. Łukowiec, Mater. Charact. 131, 148 (2017).CrossRef
26.
27.
go back to reference S. Chidambaram, B. Pari, N. Kasi, and S. Muthusamy, J. Alloy Compd. 665, 404 (2016).CrossRef S. Chidambaram, B. Pari, N. Kasi, and S. Muthusamy, J. Alloy Compd. 665, 404 (2016).CrossRef
28.
go back to reference J.C.B. Huarac, M.S. Tomar, S.P. Singh, O. Perales-Perez, L. Rivera, and S. Pena, InNSTI-Nanotech. 3, 405 (2010). J.C.B. Huarac, M.S. Tomar, S.P. Singh, O. Perales-Perez, L. Rivera, and S. Pena, InNSTI-Nanotech. 3, 405 (2010).
29.
go back to reference Q.I. Rahman, M. Ahmad, S.K. Misra, and M. Lohani, Mater. Lett. 91, 170 (2013).CrossRef Q.I. Rahman, M. Ahmad, S.K. Misra, and M. Lohani, Mater. Lett. 91, 170 (2013).CrossRef
30.
go back to reference O.S. Bello, K.A. Adegoke, S.O. Fagbenro, and O.S. Lameed, Appl. Water Sci. 9, 189 (2019).CrossRef O.S. Bello, K.A. Adegoke, S.O. Fagbenro, and O.S. Lameed, Appl. Water Sci. 9, 189 (2019).CrossRef
31.
go back to reference Y. Lai, M. Meng, Y. Yu, X. Wang, and T. Ding, Appl. Catal. B 105, 335 (2011).CrossRef Y. Lai, M. Meng, Y. Yu, X. Wang, and T. Ding, Appl. Catal. B 105, 335 (2011).CrossRef
32.
go back to reference J. Zhai, X. Tao, Y. Pu, X.-F. Zeng, and J.-F. Chen, Appl. Surf. Sci. 257, 393 (2010).CrossRef J. Zhai, X. Tao, Y. Pu, X.-F. Zeng, and J.-F. Chen, Appl. Surf. Sci. 257, 393 (2010).CrossRef
34.
go back to reference S. Sun, X. Yang, Y. Zhang, F. Zhang, J. Ding, J. Bao, and C. Gao, Prog. Nat. Sci.: Mater. Int. 22, 639 (2012).CrossRef S. Sun, X. Yang, Y. Zhang, F. Zhang, J. Ding, J. Bao, and C. Gao, Prog. Nat. Sci.: Mater. Int. 22, 639 (2012).CrossRef
35.
go back to reference C. Singh, S. Jauhar, V. Kumar, J. Singh, and S. Singhal, Mater. Chem. Phys. 156, 188 (2015).CrossRef C. Singh, S. Jauhar, V. Kumar, J. Singh, and S. Singhal, Mater. Chem. Phys. 156, 188 (2015).CrossRef
36.
go back to reference X. Cao, L. Gu, X. Lan, C. Zhao, D. Yao, and W. Sheng, Mater. Chem. Phys. 106, 175 (2007).CrossRef X. Cao, L. Gu, X. Lan, C. Zhao, D. Yao, and W. Sheng, Mater. Chem. Phys. 106, 175 (2007).CrossRef
37.
go back to reference M.M. Naik, H.S.B. Naik, N. Kottam, M. Vinuth, G. Nagaraju, and M.C. Prabhakara, J. Sol-Gel. Sci. Technol. 91, 578 (2019).CrossRef M.M. Naik, H.S.B. Naik, N. Kottam, M. Vinuth, G. Nagaraju, and M.C. Prabhakara, J. Sol-Gel. Sci. Technol. 91, 578 (2019).CrossRef
38.
go back to reference M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, and R. Viswanath, Nano-Struct. Nano-Objects 19, 100322 (2019).CrossRef M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, and R. Viswanath, Nano-Struct. Nano-Objects 19, 100322 (2019).CrossRef
39.
go back to reference C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, and K.V.B. Rao, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 90, 78 (2012).CrossRef C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, and K.V.B. Rao, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 90, 78 (2012).CrossRef
40.
go back to reference Y.T. Prabhu, K.V. Rao, B.S. Kumari, V.S.S. Kumar, and T. Pavani, Int. Nano Lett. 5, 85 (2015).CrossRef Y.T. Prabhu, K.V. Rao, B.S. Kumari, V.S.S. Kumar, and T. Pavani, Int. Nano Lett. 5, 85 (2015).CrossRef
41.
Metadata
Title
Facile Synthesis of Fe3O4/ZnO Nanocomposite: Applications to Photocatalytic and Antibacterial Activities
Authors
M. Shashank
H. S. Bhojya Naik
G. Nagaraju
Rangappa S. Keri
M. Madhukara Naik
K. Lingaraju
Publication date
30-03-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 6/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08816-9

Other articles of this Issue 6/2021

Journal of Electronic Materials 6/2021 Go to the issue

Topical Collection: 62nd Electronic Materials Conference 2020

X-ray Topography Characterization of GaN Substrates Used for Power Electronic Devices