Skip to main content
Top

2024 | OriginalPaper | Chapter

Fast and Efficient Brain Extraction with Recursive MLP Based 3D UNet

Authors : Guoqing Shangguan, Hao Xiong, Dong Liu, Hualei Shen

Published in: Neural Information Processing

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extracting brain from other non-brain tissues is an essential step in neuroimage analyses such as brain volume estimation. The transformers and 3D UNet based methods achieve strong performance using attention and 3D convolutions. They normally have complex architecture and are thus computationally slow. Consequently, they can hardly be deployed in computational resource-constrained environments. To achieve rapid segmentation, the most recent work UNeXt reduces convolution filters and also presents the Multilayer Perception (MLP) blocks that exploit simpler and linear MLP operations. To further boost performance, it shifts the feature channels in MLP block so as to focus on learning local dependencies. However, it performs segmentation on 2D medical images rather than 3D volumes. In this paper, we propose a recursive MLP based 3D UNet to efficiently extract brain from 3D head volume. Our network involves 3D convolution blocks and MLP blocks to capture both long range information and local dependencies. Meanwhile, we also leverage the simplicity of MLPs to enhance computational efficiency. Unlike UNeXt extracting one locality, we apply several shifts to capture multiple localities representing different local dependencies and then introduce a recursive design to aggregate them. To save computational cost, the shifts do not introduce any parameters and the parameters are also shared across recursions. Extensive experiments on two public datasets demonstrate the superiority of our approach against other state-of-the-art methods with respect to both accuracy and CPU inference time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49CrossRef
5.
go back to reference Cooley, C.Z., et al.: A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5(3), 229–239 (2021)CrossRef Cooley, C.Z., et al.: A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5(3), 229–239 (2021)CrossRef
6.
go back to reference Fatima, A., Madni, T.M., Anwar, F., Janjua, U.I., Sultana, N.: Automated 2D slice-based skull stripping multi-view ensemble model on NFBS and IBSR datasets. J. Digit. Imaging 35(2), 374–384 (2022)CrossRef Fatima, A., Madni, T.M., Anwar, F., Janjua, U.I., Sultana, N.: Automated 2D slice-based skull stripping multi-view ensemble model on NFBS and IBSR datasets. J. Digit. Imaging 35(2), 374–384 (2022)CrossRef
7.
go back to reference Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022) Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)
9.
go back to reference Hwang, H., Rehman, H.Z.U., Lee, S.: 3D U-Net for skull stripping in brain MRI. Appl. Sci. 9(3), 569 (2019)CrossRef Hwang, H., Rehman, H.Z.U., Lee, S.: 3D U-Net for skull stripping in brain MRI. Appl. Sci. 9(3), 569 (2019)CrossRef
10.
go back to reference Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)CrossRef Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)CrossRef
11.
go back to reference Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25CrossRef Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-75238-9_​25CrossRef
12.
go back to reference Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)CrossRef Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)CrossRef
13.
go back to reference Lian, D., Yu, Z., Sun, X., Gao, S.: AS-MLP: an axial shifted MLP architecture for vision. In: International Conference on Learning Representations (ICLR), pp. 1–19 (2022) Lian, D., Yu, Z., Sun, X., Gao, S.: AS-MLP: an axial shifted MLP architecture for vision. In: International Conference on Learning Representations (ICLR), pp. 1–19 (2022)
14.
go back to reference Mazurek, M.H., et al.: Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat. Commun. 12(1), 1–11 (2021)CrossRef Mazurek, M.H., et al.: Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat. Commun. 12(1), 1–11 (2021)CrossRef
15.
go back to reference Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016) Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)
16.
go back to reference Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybern. 49(3), 1123–1136 (2018)CrossRef Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybern. 49(3), 1123–1136 (2018)CrossRef
17.
go back to reference Pan, S., et al.: Abdomen CT multi-organ segmentation using token-based MLP-mixer. Med. Phys. 50, 3027–3038 (2022)CrossRef Pan, S., et al.: Abdomen CT multi-organ segmentation using token-based MLP-mixer. Med. Phys. 50, 3027–3038 (2022)CrossRef
18.
go back to reference Qiu, Z., Yao, T., Ngo, C.W., Mei, T.: MLP-3D: a MLP-Like 3D architecture with grouped time mixing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3062–3072 (2022) Qiu, Z., Yao, T., Ngo, C.W., Mei, T.: MLP-3D: a MLP-Like 3D architecture with grouped time mixing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3062–3072 (2022)
20.
go back to reference Sheth, K.N., et al.: Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47 (2021)CrossRef Sheth, K.N., et al.: Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47 (2021)CrossRef
21.
go back to reference Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)CrossRef Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)CrossRef
22.
go back to reference Sun, L., Shao, W., Zhu, Q., Wang, M., Li, G., Zhang, D.: Multi-scale multi-hierarchy attention convolutional neural network for fetal brain extraction. Pattern Recogn. 133, 109029 (2023)CrossRef Sun, L., Shao, W., Zhu, Q., Wang, M., Li, G., Zhang, D.: Multi-scale multi-hierarchy attention convolutional neural network for fetal brain extraction. Pattern Recogn. 133, 109029 (2023)CrossRef
23.
go back to reference Tolstikhin, I.O., et al.: MLP-Mixer: an all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021) Tolstikhin, I.O., et al.: MLP-Mixer: an all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021)
25.
go back to reference Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020) Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)
26.
go back to reference Yu, T., Li, X., Cai, Y., Sun, M., Li, P.: S\(^2\)-MLP spatial-shift MLP architecture for vision. In: the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 297–306 (2022) Yu, T., Li, X., Cai, Y., Sun, M., Li, P.: S\(^2\)-MLP spatial-shift MLP architecture for vision. In: the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 297–306 (2022)
27.
go back to reference Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)CrossRef Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)CrossRef
Metadata
Title
Fast and Efficient Brain Extraction with Recursive MLP Based 3D UNet
Authors
Guoqing Shangguan
Hao Xiong
Dong Liu
Hualei Shen
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8067-3_43

Premium Partner