Skip to main content
Top
Published in: Foundations of Computational Mathematics 1/2018

26-09-2016

Fast Structured Matrix Computations: Tensor Rank and Cohn–Umans Method

Authors: Ke Ye, Lek-Heng Lim

Published in: Foundations of Computational Mathematics | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We discuss a generalization of the Cohn–Umans method, a potent technique developed for studying the bilinear complexity of matrix multiplication by embedding matrices into an appropriate group algebra. We investigate how the Cohn–Umans method may be used for bilinear operations other than matrix multiplication, with algebras other than group algebras, and we relate it to Strassen’s tensor rank approach, the traditional framework for investigating bilinear complexity. To demonstrate the utility of the generalized method, we apply it to find the fastest algorithms for forming structured matrix–vector product, the basic operation underlying iterative algorithms for structured matrices. The structures we study include Toeplitz, Hankel, circulant, symmetric, skew-symmetric, f-circulant, block Toeplitz–Toeplitz block, triangular Toeplitz matrices, Toeplitz-plus-Hankel, sparse/banded/triangular. Except for the case of skew-symmetric matrices, for which we have only upper bounds, the algorithms derived using the generalized Cohn–Umans method in all other instances are the fastest possible in the sense of having minimum bilinear complexity. We also apply this framework to a few other bilinear operations including matrix–matrix, commutator, simultaneous matrix products, and briefly discuss the relation between tensor nuclear norm and numerical stability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Even if the exponent of matrix multiplication turns out to be 2; note that this is asymptotic.
 
2
This is essential; (7) cannot be replaced by \(\bigl (\sum _{i=1}^{r}|\lambda _{i} |^p \bigr )^{1/p}\) for \(p > 1\) or \(\max _{i=1,\ldots ,r} |\lambda _i |\). See [17, Section 3].
 
3
Later on in the article we will consider embedding of vector spaces into algebras.
 
4
We do not distinguish between an irreducible representation of G and its irreducible \(\mathbb {C}[G]\)-submodule.
 
5
The reader is reminded that scalar multiplications by a constant like \(\omega ^i\) are not counted in bilinear complexity.
 
6
The result is, however, coordinate independent, i.e., it does not depend on our choice of the bases.
 
Literature
1.
go back to reference W. A. Adkins and S. H. Weintraub, Algebra: An approach via module theory, Graduate Texts in Mathematics, 136, Springer, New York, 1992. W. A. Adkins and S. H. Weintraub, Algebra: An approach via module theory, Graduate Texts in Mathematics, 136, Springer, New York, 1992.
2.
go back to reference D. Bini and M. Capovani, “Tensor rank and border rank of band Toeplitz matrices,” SIAM J. Comput., 16 (1987), no. 2, pp. 252–258.MathSciNetCrossRefMATH D. Bini and M. Capovani, “Tensor rank and border rank of band Toeplitz matrices,” SIAM J. Comput., 16 (1987), no. 2, pp. 252–258.MathSciNetCrossRefMATH
3.
go back to reference Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.CrossRefMATH Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.CrossRefMATH
4.
go back to reference J.-L. Brylinski, “Algebraic measures of entanglement,” pp. 3–23, G. Chen and R. K. Brylinski (Eds), Mathematics of Quantum Computation, CRC, Boca Raton, FL, 2002. J.-L. Brylinski, “Algebraic measures of entanglement,” pp. 3–23, G. Chen and R. K. Brylinski (Eds), Mathematics of Quantum Computation, CRC, Boca Raton, FL, 2002.
5.
go back to reference J. Buczyński and J. M. Landsberg, “Ranks of tensors and a generalization of secant varieties,” Linear Algebra Appl., 438 (2013), no. 2, pp. 668–689.MathSciNetCrossRefMATH J. Buczyński and J. M. Landsberg, “Ranks of tensors and a generalization of secant varieties,” Linear Algebra Appl., 438 (2013), no. 2, pp. 668–689.MathSciNetCrossRefMATH
6.
go back to reference P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften, 315, Springer-Verlag, Berlin, 1997.MATH P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften, 315, Springer-Verlag, Berlin, 1997.MATH
7.
go back to reference R. H.-F. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, Fundamentals of Algorithms, 5, SIAM, Philadelphia, PA, 2007.CrossRef R. H.-F. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, Fundamentals of Algorithms, 5, SIAM, Philadelphia, PA, 2007.CrossRef
8.
go back to reference H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic algorithms for matrix multiplication,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 46 (2005), pp. 379–388.CrossRef H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic algorithms for matrix multiplication,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 46 (2005), pp. 379–388.CrossRef
9.
go back to reference H. Cohn and C. Umans, “A group-theoretic approach to fast matrix multiplication,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 44 (2003), pp. 438–449. H. Cohn and C. Umans, “A group-theoretic approach to fast matrix multiplication,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 44 (2003), pp. 438–449.
10.
go back to reference H. Cohn and C. Umans, “Fast matrix multiplication using coherent configurations,” Proc. ACM–SIAM Symp. Discrete Algorithms (SODA), 24 ( 2013), pp. 1074–1087. H. Cohn and C. Umans, “Fast matrix multiplication using coherent configurations,” Proc. ACM–SIAM Symp. Discrete Algorithms (SODA), 24 ( 2013), pp. 1074–1087.
11.
go back to reference S. A. Cook, On the Minimum Computation Time of Functions, Ph.D. thesis, Harvard University, Cambridge, MA, 1966. S. A. Cook, On the Minimum Computation Time of Functions, Ph.D. thesis, Harvard University, Cambridge, MA, 1966.
12.
go back to reference J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comp., 19 (1965), no. 90, pp. 297–301.MathSciNetCrossRefMATH J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comp., 19 (1965), no. 90, pp. 297–301.MathSciNetCrossRefMATH
13.
go back to reference D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbolic Comput., 9 (1990), no. 3, pp. 251–280.MathSciNetCrossRefMATH D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbolic Comput., 9 (1990), no. 3, pp. 251–280.MathSciNetCrossRefMATH
14.
go back to reference P. J. Davis, Circulant Matrices, John Wiley, New York, NY, 1979.MATH P. J. Davis, Circulant Matrices, John Wiley, New York, NY, 1979.MATH
15.
go back to reference V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approximation problem,” SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084–1127.MathSciNetCrossRefMATH V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approximation problem,” SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084–1127.MathSciNetCrossRefMATH
16.
go back to reference J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast matrix multiplication is stable,” Numer. Math., 106 (2007), no. 2, pp. 199–224.MathSciNetCrossRefMATH J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast matrix multiplication is stable,” Numer. Math., 106 (2007), no. 2, pp. 199–224.MathSciNetCrossRefMATH
19.
go back to reference G. Golub and C. Van Loan, Matrix Computations, 4th Ed., Johns Hopkins University Press, Baltimore, MD, 2013.MATH G. Golub and C. Van Loan, Matrix Computations, 4th Ed., Johns Hopkins University Press, Baltimore, MD, 2013.MATH
20.
go back to reference N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PA, 2002.CrossRefMATH N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PA, 2002.CrossRefMATH
22.
go back to reference N. J. Higham, “Stability of a method for multiplying complex matrices with three real matrix multiplications,” SIAM J. Matrix Anal. Appl., 13 (1992), no. 3, pp. 681–687.MathSciNetCrossRefMATH N. J. Higham, “Stability of a method for multiplying complex matrices with three real matrix multiplications,” SIAM J. Matrix Anal. Appl., 13 (1992), no. 3, pp. 681–687.MathSciNetCrossRefMATH
24.
go back to reference T. Kailath and J. Chun, “Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices,” SIAM J. Matrix Anal. Appl., 15 (1994), no. 1, pp. 114–128.MathSciNetCrossRefMATH T. Kailath and J. Chun, “Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices,” SIAM J. Matrix Anal. Appl., 15 (1994), no. 1, pp. 114–128.MathSciNetCrossRefMATH
25.
go back to reference A. Karatsuba and Yu. Ofman, “Multiplication of many-digital numbers by automatic computers,” Dokl. Akad. Nauk SSSR, 145 (1962), pp. 293–294 [English translation: Soviet Phys. Dokl., 7 (1963), pp. 595–596]. A. Karatsuba and Yu. Ofman, “Multiplication of many-digital numbers by automatic computers,” Dokl. Akad. Nauk SSSR, 145 (1962), pp. 293–294 [English translation: Soviet Phys. Dokl., 7 (1963), pp. 595–596].
26.
go back to reference D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical algorithms, 3rd Ed., Addison–Wesley, Reading, MA, 1998. D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical algorithms, 3rd Ed., Addison–Wesley, Reading, MA, 1998.
28.
go back to reference J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, AMS, Providence, RI, 2012. J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, AMS, Providence, RI, 2012.
29.
go back to reference S. Lang, Algebra, Rev. 3rd Ed., Graduate Texts in Mathematics, 211, Springer, New York, NY, 2002. S. Lang, Algebra, Rev. 3rd Ed., Graduate Texts in Mathematics, 211, Springer, New York, NY, 2002.
30.
go back to reference F. Le Gall, “Powers of tensors and fast matrix multiplication,” Proc. Internat. Symp. Symbolic Algebr. Comput. (ISSAC), 39 (2014), pp. 296–303.MathSciNetMATH F. Le Gall, “Powers of tensors and fast matrix multiplication,” Proc. Internat. Symp. Symbolic Algebr. Comput. (ISSAC), 39 (2014), pp. 296–303.MathSciNetMATH
31.
go back to reference L.-H. Lim, “Tensors and hypermatrices,” in: L. Hogben (Ed.), Handbook of Linear Algebra, 2nd Ed., CRC Press, Boca Raton, FL, 2013. L.-H. Lim, “Tensors and hypermatrices,” in: L. Hogben (Ed.), Handbook of Linear Algebra, 2nd Ed., CRC Press, Boca Raton, FL, 2013.
32.
go back to reference J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Rev. Ed., Graduate Studies in Mathematics, 30, AMS, Providence, RI, 2001. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Rev. Ed., Graduate Studies in Mathematics, 30, AMS, Providence, RI, 2001.
33.
34.
go back to reference M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, NY, 2004.MATH M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, NY, 2004.MATH
35.
go back to reference G. Ottaviani, “Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited,” Quad. Mat., 21 (2007), pp. 315–352. G. Ottaviani, “Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited,” Quad. Mat., 21 (2007), pp. 315–352.
36.
go back to reference V. Y. Pan, Structured Matrices and Polynomials: Unified superfast algorithms, Birkhäuser, Boston, MA, 2001.CrossRefMATH V. Y. Pan, Structured Matrices and Polynomials: Unified superfast algorithms, Birkhäuser, Boston, MA, 2001.CrossRefMATH
37.
38.
go back to reference A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,” Computing, 7 (1971), no. 3, pp. 281–292.MathSciNetCrossRefMATH A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,” Computing, 7 (1971), no. 3, pp. 281–292.MathSciNetCrossRefMATH
39.
go back to reference G. Strang and S. MacNamara, “Functions of difference matrices are Toeplitz plus Hankel,” SIAM Rev., 56 (2014), no. 3, pp. 525–546.MathSciNetCrossRefMATH G. Strang and S. MacNamara, “Functions of difference matrices are Toeplitz plus Hankel,” SIAM Rev., 56 (2014), no. 3, pp. 525–546.MathSciNetCrossRefMATH
41.
42.
go back to reference V. Strassen, “Relative bilinear complexity and matrix multiplication,” J. Reine Angew. Math., 375/376 (1987), pp. 406–443.MathSciNetMATH V. Strassen, “Relative bilinear complexity and matrix multiplication,” J. Reine Angew. Math., 375/376 (1987), pp. 406–443.MathSciNetMATH
43.
go back to reference V. Strassen, “Vermeidung von Divisionen,” J. Reine Angew. Math., 264 (1973), pp. 184–202.MathSciNetMATH V. Strassen, “Vermeidung von Divisionen,” J. Reine Angew. Math., 264 (1973), pp. 184–202.MathSciNetMATH
44.
go back to reference A. L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of integers,” Dokl. Akad. Nauk SSSR, 150 (1963), pp. 496–498 [English translation: Soviet Math. Dokl., 4 (1963), pp. 714–716]. A. L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of integers,” Dokl. Akad. Nauk SSSR, 150 (1963), pp. 496–498 [English translation: Soviet Math. Dokl., 4 (1963), pp. 714–716].
45.
46.
go back to reference V. Vassilevska Williams, “Multiplying matrices faster than Coppersmith–Winograd,” Proc. ACM Symp. Theory Comput. (STOC), 44 (2012), pp. 887–898.MathSciNetMATH V. Vassilevska Williams, “Multiplying matrices faster than Coppersmith–Winograd,” Proc. ACM Symp. Theory Comput. (STOC), 44 (2012), pp. 887–898.MathSciNetMATH
47.
go back to reference D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, PA, 2007.CrossRefMATH D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, PA, 2007.CrossRefMATH
48.
go back to reference S. Winograd, “Some bilinear forms whose multiplicative complexity depends on the field of constants,” Math. Syst. Theory, 10 (1976/77), no. 2, pp. 169–180. S. Winograd, “Some bilinear forms whose multiplicative complexity depends on the field of constants,” Math. Syst. Theory, 10 (1976/77), no. 2, pp. 169–180.
49.
go back to reference K. Ye and L.-H. Lim, “Algorithms for structured matrix-vector product of optimal bilinear complexity,” Proc. IEEE Inform. Theory Workshop (ITW), 16 (2016), to appear. K. Ye and L.-H. Lim, “Algorithms for structured matrix-vector product of optimal bilinear complexity,” Proc. IEEE Inform. Theory Workshop (ITW), 16 (2016), to appear.
50.
go back to reference K. Ye and L.-H. Lim, “Every matrix is a product of Toeplitz matrices,” Found. Comput. Math., 16 (2016), no. 3, pp. 577–598.MathSciNetCrossRefMATH K. Ye and L.-H. Lim, “Every matrix is a product of Toeplitz matrices,” Found. Comput. Math., 16 (2016), no. 3, pp. 577–598.MathSciNetCrossRefMATH
Metadata
Title
Fast Structured Matrix Computations: Tensor Rank and Cohn–Umans Method
Authors
Ke Ye
Lek-Heng Lim
Publication date
26-09-2016
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 1/2018
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-016-9332-x

Other articles of this Issue 1/2018

Foundations of Computational Mathematics 1/2018 Go to the issue

Premium Partner