Skip to main content
Erschienen in: Foundations of Computational Mathematics 3/2016

01.06.2016

Every Matrix is a Product of Toeplitz Matrices

verfasst von: Ke Ye, Lek-Heng Lim

Erschienen in: Foundations of Computational Mathematics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We show that every \(n\,\times \,n\) matrix is generically a product of \(\lfloor n/2 \rfloor + 1\) Toeplitz matrices and always a product of at most \(2n+5\) Toeplitz matrices. The same result holds true if the word ‘Toeplitz’ is replaced by ‘Hankel,’ and the generic bound \(\lfloor n/2 \rfloor + 1\) is sharp. We will see that these decompositions into Toeplitz or Hankel factors are unusual: We may not, in general, replace the subspace of Toeplitz or Hankel matrices by an arbitrary \((2n-1)\)-dimensional subspace of \({n\,\times \,n}\) matrices. Furthermore, such decompositions do not exist if we require the factors to be symmetric Toeplitz or persymmetric Hankel, even if we allow an infinite number of factors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We restrict our attention to decompositions that exist for arbitrary matrices over both \(\mathbb {R}\) and \(\mathbb {C}\). Of the six decompositions described in [47], we discounted the Cholesky (only for positive definite matrices), Schur (only over \(\mathbb {C}\)), and spectral decompositions (only for normal matrices).
 
Literatur
1.
Zurück zum Zitat “Algorithms for the ages,” Science, 287 (2000), no. 5454, p. 799. “Algorithms for the ages,” Science, 287 (2000), no. 5454, p. 799.
2.
Zurück zum Zitat G. S. Ammar and W. B. Gragg, “Superfast solution of real positive definite Toeplitz systems,” SIAM J. Matrix Anal. Appl., 9 (1988), no. 1, pp. 61–76.MathSciNetCrossRefMATH G. S. Ammar and W. B. Gragg, “Superfast solution of real positive definite Toeplitz systems,” SIAM J. Matrix Anal. Appl., 9 (1988), no. 1, pp. 61–76.MathSciNetCrossRefMATH
3.
Zurück zum Zitat Y. Barnea and A. Shalev, “Hausdorff dimension, pro-\(p\) groups, and Kac–Moody algebras,” Trans. Amer. Math. Soc., 349 (1997), no. 12, pp. 5073–5091.MathSciNetCrossRefMATH Y. Barnea and A. Shalev, “Hausdorff dimension, pro-\(p\) groups, and Kac–Moody algebras,” Trans. Amer. Math. Soc., 349 (1997), no. 12, pp. 5073–5091.MathSciNetCrossRefMATH
4.
Zurück zum Zitat D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini, Software, Environments, and Tools, 25, SIAM, Philadelphia, PA, 2013.MATH D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini, Software, Environments, and Tools, 25, SIAM, Philadelphia, PA, 2013.MATH
5.
Zurück zum Zitat H. Bart, I. Gohberg, and M. A. Kaashoek, “Wiener-Hopf integral equations, Toeplitz matrices and linear systems,” pp. 85–135, Operator Theory: Adv. Appl., 4, Birkhäuser, Boston, MA, 1982. H. Bart, I. Gohberg, and M. A. Kaashoek, “Wiener-Hopf integral equations, Toeplitz matrices and linear systems,” pp. 85–135, Operator Theory: Adv. Appl., 4, Birkhäuser, Boston, MA, 1982.
6.
Zurück zum Zitat J. Bernik, R. Drnovšek, D. Kokol Bukovšek, T. Košir, M. Omladič, and H. Radjavi, “On semitransitive Jordan algebras of matrices,” J. Algebra Appl., 10 (2011), no. 2, pp. 319–333. J. Bernik, R. Drnovšek, D. Kokol Bukovšek, T. Košir, M. Omladič, and H. Radjavi, “On semitransitive Jordan algebras of matrices,” J. Algebra Appl., 10 (2011), no. 2, pp. 319–333.
7.
Zurück zum Zitat D. Bini and B. Meini, “Solving certain queueing problems modelled by Toeplitz matrices,” Calcolo, 30 (1993), no. 4, pp. 395–420.MathSciNetCrossRefMATH D. Bini and B. Meini, “Solving certain queueing problems modelled by Toeplitz matrices,” Calcolo, 30 (1993), no. 4, pp. 395–420.MathSciNetCrossRefMATH
8.
Zurück zum Zitat R. B. Bitmead and B. D. O. Anderson, “Asymptotically fast solution of Toeplitz and related systems of linear equations,” Linear Algebra Appl., 34 (1980), pp. 103–116.MathSciNetCrossRefMATH R. B. Bitmead and B. D. O. Anderson, “Asymptotically fast solution of Toeplitz and related systems of linear equations,” Linear Algebra Appl., 34 (1980), pp. 103–116.MathSciNetCrossRefMATH
9.
Zurück zum Zitat M. Bordemann, E. Meinrenken, and M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and \({\mathfrak{gl}}(N)\), \(N\rightarrow \infty \) limits,” Comm. Math. Phys., 165 (1994), no. 2, pp. 281–296.MathSciNetCrossRefMATH M. Bordemann, E. Meinrenken, and M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and \({\mathfrak{gl}}(N)\), \(N\rightarrow \infty \) limits,” Comm. Math. Phys., 165 (1994), no. 2, pp. 281–296.MathSciNetCrossRefMATH
10.
Zurück zum Zitat A. Borel, Linear Algebraic Groups, 2nd Ed., Graduate Texts in Mathematics, 126, Springer-Verlag, New York, NY, 1991. A. Borel, Linear Algebraic Groups, 2nd Ed., Graduate Texts in Mathematics, 126, Springer-Verlag, New York, NY, 1991.
11.
Zurück zum Zitat A. Borodin and A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants,” Integral Equations Operator Theory, 37 (2000), no. 4, pp. 386–396.MathSciNetCrossRefMATH A. Borodin and A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants,” Integral Equations Operator Theory, 37 (2000), no. 4, pp. 386–396.MathSciNetCrossRefMATH
12.
Zurück zum Zitat D. Burns and V. Guillemin, “The Tian–Yau–Zelditch theorem and Toeplitz operators,” J. Inst. Math. Jussieu, 10 (2011), no. 3, pp. 449–461.MathSciNetCrossRefMATH D. Burns and V. Guillemin, “The Tian–Yau–Zelditch theorem and Toeplitz operators,” J. Inst. Math. Jussieu, 10 (2011), no. 3, pp. 449–461.MathSciNetCrossRefMATH
13.
Zurück zum Zitat R. H. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, Fundamentals of Algorithms, 5, SIAM, Philadelphia, PA, 2007.CrossRef R. H. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, Fundamentals of Algorithms, 5, SIAM, Philadelphia, PA, 2007.CrossRef
14.
15.
Zurück zum Zitat R. H. Chan and G. Strang, “Toeplitz equations by conjugate gradients with circulant preconditioner,” SIAM J. Sci. Statist. Comput., 10 (1989), no. 1, pp. 104–119.MathSciNetCrossRefMATH R. H. Chan and G. Strang, “Toeplitz equations by conjugate gradients with circulant preconditioner,” SIAM J. Sci. Statist. Comput., 10 (1989), no. 1, pp. 104–119.MathSciNetCrossRefMATH
16.
Zurück zum Zitat T. F. Chan, “An optimal circulant preconditioner for Toeplitz systems,” SIAM J. Sci. Statist. Comput., 9 (1988), no. 4, pp. 766–771.MathSciNetCrossRefMATH T. F. Chan, “An optimal circulant preconditioner for Toeplitz systems,” SIAM J. Sci. Statist. Comput., 9 (1988), no. 4, pp. 766–771.MathSciNetCrossRefMATH
17.
Zurück zum Zitat S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, “A superfast algorithm for Toeplitz systems of linear equations,” SIAM J. Matrix Anal. Appl., 29 (2007), no. 4, pp. 1247–1266.MathSciNetCrossRefMATH S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, “A superfast algorithm for Toeplitz systems of linear equations,” SIAM J. Matrix Anal. Appl., 29 (2007), no. 4, pp. 1247–1266.MathSciNetCrossRefMATH
18.
Zurück zum Zitat W. W. Chen, C. M. Hurvich, and Y. Lu, “On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series,” J. Amer. Statist. Assoc., 101 (2006), no. 474, pp. 812–822.MathSciNetCrossRefMATH W. W. Chen, C. M. Hurvich, and Y. Lu, “On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series,” J. Amer. Statist. Assoc., 101 (2006), no. 474, pp. 812–822.MathSciNetCrossRefMATH
19.
Zurück zum Zitat W. K. Cochran, R. J. Plemmons, and T. C. Torgersen, “Exploiting Toeplitz structure in atmospheric image restoration,” pp. 177–189, Structured Matrices in Mathematics, Computer Science, and Engineering I, Contemp. Math., 280, AMS, Providence, RI, 2001. W. K. Cochran, R. J. Plemmons, and T. C. Torgersen, “Exploiting Toeplitz structure in atmospheric image restoration,” pp. 177–189, Structured Matrices in Mathematics, Computer Science, and Engineering I, Contemp. Math., 280, AMS, Providence, RI, 2001.
20.
Zurück zum Zitat F. de Hoog, “A new algorithm for solving Toeplitz systems of equations,” Linear Algebra Appl., 88/89 (1987), pp. 123–138.MathSciNetCrossRefMATH F. de Hoog, “A new algorithm for solving Toeplitz systems of equations,” Linear Algebra Appl., 88/89 (1987), pp. 123–138.MathSciNetCrossRefMATH
21.
Zurück zum Zitat P. Deift, A. Its, and I. Krasovsky, “Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities,” Ann. Math., 174 (2011), no. 2, pp. 1243–1299.MathSciNetCrossRefMATH P. Deift, A. Its, and I. Krasovsky, “Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities,” Ann. Math., 174 (2011), no. 2, pp. 1243–1299.MathSciNetCrossRefMATH
22.
Zurück zum Zitat A. Dembo, C. L. Mallows, and L. A. Shepp, “Embedding nonnegative definite Toeplitz matrices in nonnegative definite circulant matrices, with application to covariance estimation,” IEEE Trans. Inform. Theory, 35 (1989), no. 6, pp. 1206–1212.MathSciNetCrossRefMATH A. Dembo, C. L. Mallows, and L. A. Shepp, “Embedding nonnegative definite Toeplitz matrices in nonnegative definite circulant matrices, with application to covariance estimation,” IEEE Trans. Inform. Theory, 35 (1989), no. 6, pp. 1206–1212.MathSciNetCrossRefMATH
23.
Zurück zum Zitat R. G. Douglas and R. Howe, “On the \(C^*\)-algebra of Toeplitz operators on the quarterplane,” Trans. Amer. Math. Soc., 158 (1971), pp. 203–217.MathSciNetMATH R. G. Douglas and R. Howe, “On the \(C^*\)-algebra of Toeplitz operators on the quarterplane,” Trans. Amer. Math. Soc., 158 (1971), pp. 203–217.MathSciNetMATH
24.
Zurück zum Zitat E. Eisenberg, A. Baram, and M. Baer, “Calculation of the density of states using discrete variable representation and Toeplitz matrices,” J. Phys. A, 28 (1995), no. 16, pp. L433–L438.MathSciNetCrossRefMATH E. Eisenberg, A. Baram, and M. Baer, “Calculation of the density of states using discrete variable representation and Toeplitz matrices,” J. Phys. A, 28 (1995), no. 16, pp. L433–L438.MathSciNetCrossRefMATH
25.
26.
27.
Zurück zum Zitat P. Favati, G. Lotti, and O. Menchi, “A divide and conquer algorithm for the superfast solution of Toeplitz-like systems,” SIAM J. Matrix Anal. Appl., 33 (2012), no. 4, pp. 1039–1056.MathSciNetCrossRefMATH P. Favati, G. Lotti, and O. Menchi, “A divide and conquer algorithm for the superfast solution of Toeplitz-like systems,” SIAM J. Matrix Anal. Appl., 33 (2012), no. 4, pp. 1039–1056.MathSciNetCrossRefMATH
28.
Zurück zum Zitat M. Geck, An Introduction to Algebraic Geometry and Algebraic Groups, Oxford Graduate Texts in Mathematics, 10, Oxford University Press, Oxford, 2003. M. Geck, An Introduction to Algebraic Geometry and Algebraic Groups, Oxford Graduate Texts in Mathematics, 10, Oxford University Press, Oxford, 2003.
29.
Zurück zum Zitat V. Gorin, “The \(q\)-Gelfand-Tsetlin graph, Gibbs measures and \(q\)-Toeplitz matrices,” Adv. Math., 229 (2012), no. 1, pp. 201–266.MathSciNetCrossRefMATH V. Gorin, “The \(q\)-Gelfand-Tsetlin graph, Gibbs measures and \(q\)-Toeplitz matrices,” Adv. Math., 229 (2012), no. 1, pp. 201–266.MathSciNetCrossRefMATH
31.
Zurück zum Zitat U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd Ed., Chelsea Publishing, New York, NY, 1984.MATH U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd Ed., Chelsea Publishing, New York, NY, 1984.MATH
32.
Zurück zum Zitat J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed sensing matrices with applications to sparse channel estimation,” IEEE Trans. Inform. Theory, 56 (2010), no. 11, pp. 5862–5875.MathSciNetCrossRef J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed sensing matrices with applications to sparse channel estimation,” IEEE Trans. Inform. Theory, 56 (2010), no. 11, pp. 5862–5875.MathSciNetCrossRef
34.
Zurück zum Zitat J.-J. Hsue and A. E. Yagle, “Fast algorithms for solving Toeplitz systems of equations using number-theoretic transforms,” Signal Process., 44 (1995), no. 1, pp. 89–101.CrossRefMATH J.-J. Hsue and A. E. Yagle, “Fast algorithms for solving Toeplitz systems of equations using number-theoretic transforms,” Signal Process., 44 (1995), no. 1, pp. 89–101.CrossRefMATH
35.
Zurück zum Zitat M. Kac, “Some combinatorial aspects of the theory of Toeplitz matrices,” pp. 199–208, Proc. IBM Sci. Comput. Sympos. Combinatorial Problems, IBM Data Process. Division, White Plains, NY, 1964. M. Kac, “Some combinatorial aspects of the theory of Toeplitz matrices,” pp. 199–208, Proc. IBM Sci. Comput. Sympos. Combinatorial Problems, IBM Data Process. Division, White Plains, NY, 1964.
36.
Zurück zum Zitat H. Khalil, B. Mourrain, and M. Schatzman, “Superfast solution of Toeplitz systems based on syzygy reduction,” Linear Algebra Appl., 438 (2013), no. 9, pp. 3563–3575.MathSciNetCrossRefMATH H. Khalil, B. Mourrain, and M. Schatzman, “Superfast solution of Toeplitz systems based on syzygy reduction,” Linear Algebra Appl., 438 (2013), no. 9, pp. 3563–3575.MathSciNetCrossRefMATH
37.
Zurück zum Zitat A. W. Knapp, Lie Groups Beyond an Introduction, 2nd Ed., Progress in Mathematics, 140, Birkhäuser, Boston, MA, 2002. A. W. Knapp, Lie Groups Beyond an Introduction, 2nd Ed., Progress in Mathematics, 140, Birkhäuser, Boston, MA, 2002.
38.
Zurück zum Zitat J. M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, RI, 2012.MATH J. M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, RI, 2012.MATH
39.
Zurück zum Zitat F.-R. Lin, M. K. Ng, and R. H. Chan, “Preconditioners for Wiener-Hopf equations with high-order quadrature rules,” SIAM J. Numer. Anal., 34 (1997), no. 4, pp. 1418–1431.MathSciNetCrossRefMATH F.-R. Lin, M. K. Ng, and R. H. Chan, “Preconditioners for Wiener-Hopf equations with high-order quadrature rules,” SIAM J. Numer. Anal., 34 (1997), no. 4, pp. 1418–1431.MathSciNetCrossRefMATH
40.
41.
Zurück zum Zitat N. Makarov and A. Poltoratski, “Beurling–Malliavin theory for Toeplitz kernels,” Invent. Math., 180 (2010), no. 3, pp. 443–480.MathSciNetCrossRefMATH N. Makarov and A. Poltoratski, “Beurling–Malliavin theory for Toeplitz kernels,” Invent. Math., 180 (2010), no. 3, pp. 443–480.MathSciNetCrossRefMATH
43.
Zurück zum Zitat M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, NY, 2004.MATH M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, NY, 2004.MATH
44.
Zurück zum Zitat H. Özbay and A. Tannenbaum, “A skew Toeplitz approach to the \(H^\infty \) optimal control of multivariable distributed systems,” SIAM J. Control Optim., 28 (1990), no. 3, pp. 653–670.MathSciNetCrossRefMATH H. Özbay and A. Tannenbaum, “A skew Toeplitz approach to the \(H^\infty \) optimal control of multivariable distributed systems,” SIAM J. Control Optim., 28 (1990), no. 3, pp. 653–670.MathSciNetCrossRefMATH
45.
Zurück zum Zitat D. Poland, “Toeplitz matrices and random walks with memory,” Phys. A, 223 (1996), no. 1–2, pp. 113–124.MathSciNetCrossRef D. Poland, “Toeplitz matrices and random walks with memory,” Phys. A, 223 (1996), no. 1–2, pp. 113–124.MathSciNetCrossRef
46.
Zurück zum Zitat K. Rietsch, “Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties,” J. Amer. Math. Soc., 16 (2003), no. 2, pp. 363–392.MathSciNetCrossRefMATH K. Rietsch, “Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties,” J. Amer. Math. Soc., 16 (2003), no. 2, pp. 363–392.MathSciNetCrossRefMATH
47.
Zurück zum Zitat G. W. Stewart, “The decompositional approach to matrix computation,” Comput. Sci. Eng., 2 (2000), no. 1, pp. 50–59.CrossRef G. W. Stewart, “The decompositional approach to matrix computation,” Comput. Sci. Eng., 2 (2000), no. 1, pp. 50–59.CrossRef
48.
Zurück zum Zitat M. Stewart, “A superfast Toeplitz solver with improved numerical stability,” SIAM J. Matrix Anal. Appl., 25 (2003), no. 3, pp. 669–693.MathSciNetCrossRefMATH M. Stewart, “A superfast Toeplitz solver with improved numerical stability,” SIAM J. Matrix Anal. Appl., 25 (2003), no. 3, pp. 669–693.MathSciNetCrossRefMATH
49.
Zurück zum Zitat J. L. Taylor, Several Complex Variables with Connections to Algebraic Geometry and Lie groups, Graduate Studies in Mathematics, 46, AMS, Providence, RI, 2002. J. L. Taylor, Several Complex Variables with Connections to Algebraic Geometry and Lie groups, Graduate Studies in Mathematics, 46, AMS, Providence, RI, 2002.
50.
Zurück zum Zitat J. Toft, “The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators,” J. Pseudo-Differ. Oper. Appl., 3 (2012), no. 2, pp. 145–227.MathSciNetCrossRefMATH J. Toft, “The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators,” J. Pseudo-Differ. Oper. Appl., 3 (2012), no. 2, pp. 145–227.MathSciNetCrossRefMATH
51.
Zurück zum Zitat E. E. Tyrtyshnikov, “Fast computation of Toeplitz forms and some multidimensional integrals,” Russian J. Numer. Anal. Math. Modelling, 20 (2005), no. 4, pp. 383–390.MathSciNetCrossRefMATH E. E. Tyrtyshnikov, “Fast computation of Toeplitz forms and some multidimensional integrals,” Russian J. Numer. Anal. Math. Modelling, 20 (2005), no. 4, pp. 383–390.MathSciNetCrossRefMATH
52.
Zurück zum Zitat S. Serra, “The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems,” Numer. Math., 81 (1999), no. 3, pp. 461–495.MathSciNetCrossRefMATH S. Serra, “The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems,” Numer. Math., 81 (1999), no. 3, pp. 461–495.MathSciNetCrossRefMATH
53.
Zurück zum Zitat U. Steimel, “Fast computation of Toeplitz forms under narrowband conditions with applications to statistical signal processing,” Signal Process., 1 (1979), no. 2, pp. 141–158.MathSciNetCrossRefMATH U. Steimel, “Fast computation of Toeplitz forms under narrowband conditions with applications to statistical signal processing,” Signal Process., 1 (1979), no. 2, pp. 141–158.MathSciNetCrossRefMATH
54.
Zurück zum Zitat G. Strang, “The discrete cosine transform, block Toeplitz matrices, and wavelets,” pp. 517–536, Advances in Computational Mathematics, Lecture Notes in Pure and Applied Mathematics, 202, Dekker, New York, NY, 1999. G. Strang, “The discrete cosine transform, block Toeplitz matrices, and wavelets,” pp. 517–536, Advances in Computational Mathematics, Lecture Notes in Pure and Applied Mathematics, 202, Dekker, New York, NY, 1999.
55.
Zurück zum Zitat G. Strang, “A proposal for Toeplitz matrix calculations,” Stud. Appl. Math., 74 (1986), no. 2, pp. 171–176.CrossRefMATH G. Strang, “A proposal for Toeplitz matrix calculations,” Stud. Appl. Math., 74 (1986), no. 2, pp. 171–176.CrossRefMATH
56.
Zurück zum Zitat M. Van Barel, G. Heinig, and P. Kravanja, “A stabilized superfast solver for nonsymmetric Toeplitz systems,” SIAM J. Matrix Anal. Appl., 23 (2001), no. 2, pp. 494–510.MathSciNetCrossRefMATH M. Van Barel, G. Heinig, and P. Kravanja, “A stabilized superfast solver for nonsymmetric Toeplitz systems,” SIAM J. Matrix Anal. Appl., 23 (2001), no. 2, pp. 494–510.MathSciNetCrossRefMATH
57.
Zurück zum Zitat K. Ye and L.-H. Lim, “New classes of matrix decompositions,” preprint, (2015). K. Ye and L.-H. Lim, “New classes of matrix decompositions,” preprint, (2015).
Metadaten
Titel
Every Matrix is a Product of Toeplitz Matrices
verfasst von
Ke Ye
Lek-Heng Lim
Publikationsdatum
01.06.2016
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 3/2016
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-015-9254-z

Weitere Artikel der Ausgabe 3/2016

Foundations of Computational Mathematics 3/2016 Zur Ausgabe

Premium Partner