Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2022

01-02-2022

Fast two-beam collisions in a linear optical medium with weak cubic loss in spatial dimension higher than 1

Authors: Avner Peleg, Toan T. Huynh, Quan M. Nguyen

Published in: Journal of Engineering Mathematics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the dynamics of fast two-beam collisions in linear bulk optical media with weak cubic loss in spatial dimension higher than 1. The cubic loss arises due to two-photon absorption. We first generalize the perturbation theory that was developed for analyzing two-pulse collisions in spatial dimension 1 to spatial dimension 2. We then use the generalized two-dimensional perturbation theory to show that the collision leads to a change in the beam shapes in the direction transverse to the relative velocity vector. Furthermore, we show that in the important case of a separable initial condition for both beams, the longitudinal part in the expression for the amplitude shift is universal, while the transverse part is not universal. The same behavior holds for collisions between pulsed optical beams in spatial dimension 3. We check these analytic predictions along with other predictions concerning the effects of anisotropy in the initial condition by extensive numerical simulations with the weakly perturbed linear propagation model. The agreement between the perturbation theory and the simulations is very good. Thus, our study extends and generalizes the results of previous works, which were limited to spatial dimension 1. The results are very useful for multiwavelength optical communication systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In particular, the collision length is much smaller than all the length scales associated with the linear processes that are described by the evolution model. For example, in the case of a fast collision between two pulses of the linear propagation model, the collision length is much smaller than the diffraction length (or the dispersion length) [8, 10].
 
2
In the current paper, we define the spatial dimension of the problem as the number of the coordinates on which the electric field depends for a given distance z. Therefore, in the three works in Refs. [810], for example, the spatial dimension was 1, since for each value of z, the electric field was a function of one coordinate only.
 
3
The dimensionless distance z in Eq. (1) is \(z=Z/L_{D}\), where Z is the dimensional distance, \(L_{D}=x_{0}^{2}/{\tilde{d}}_{2}\) is the diffraction length for a reference beam with width \(x_{0}\) in the x direction, and \(\tilde{d}_{2}\) is the dimensional diffraction coefficient. The dimensionless coordinates x and y are \(x=X/x_{0}\) and \(y=Y/x_{0}\), where X and Y are the dimensional coordinates. \(\psi _{j}=E_{j}/\tilde{P}_{0}^{1/2}\), where \(E_{j}\) is the electric field of the jth beam and \({\tilde{P}}_{0}\) is the peak power. The coefficients \(d_{11}\) and \(\epsilon _{3}\) are given by: \(d_{11}={\tilde{d}}_{11} x_{0}/\tilde{d}_{2}\) and \(\epsilon _{3}={\tilde{\rho }}_{3} {\tilde{P}}_{0} x_{0}^{2}/{\tilde{d}}_{2}\), where \({\tilde{d}}_{11}\) is the dimensional beam-steering coefficient, and \({\tilde{\rho }}_{3}\) is the dimensional cubic loss coefficient.
 
4
The separable initial condition is of special importance since it describes the electric fields that are produced by many lasers [4, 5].
 
5
In particular, the generalized perturbation method can be used to obtain explicit formulas for the collision-induced changes in the shapes and amplitudes of pulsed optical beams in fast collisions in spatial dimension 3.
 
6
The values of \(z_\mathrm{{i}}\) are determined by: \(z_\mathrm{{i}}=z_\mathrm{{c}}+r(z_\mathrm{{f}}-z_\mathrm{{c}})\), where \(r=1/5\), as an example. Thus, \(z_\mathrm{{i}}\) is an intermediate distance that is larger than \(z_\mathrm{{c}}\), at which the collision is not yet completed.
 
7
Since in Sect. 3.3 the coefficient \({\tilde{a}}_{1}\) depends on \(A_{1}(0)\) and \(A_{2}(0)\) [instead of on \(A_{1}(z_\mathrm{{c}}^{-})\) and \(A_{2}(z_\mathrm{{c}}^{-})\)], we replace the notation \(\tilde{a}_{1}(z_\mathrm{{c}}^{-})\) by \({\tilde{a}}_{1}\) in this subsection.
 
8
Since the fractional intensity reduction factor obtained in the simulation \(\varDelta I_{1}^{(r)(\mathrm{{num}})}(x,y,z)\) shows weak dependence on x, we use two different methods to obtain \(\varDelta I_{1}^{(r)}(y,z)\) from the simulation result. In the first method, we calculate \(\varDelta I_{1}^{(r)}(y,z)\) by averaging \(\varDelta I_{1}^{(r)(\mathrm{{num}})}(x,y,z)\) over the x-interval \([-2,2]\), and in the second method, we use the value of \(\varDelta I_{1}^{(r)(\mathrm{{num}})}(0,y,z)\).
 
9
Note that \({\bar{\varPsi }}_{20}\) depends on \(y_{20}\). However, for brevity of notation, we did not write this dependence explicitly in Eq. (86) and throughout the paper.
 
Literature
1.
go back to reference Van Kampen NG (2007) Stochastic processes in physics and chemistry. Elsevier, AmsterdamMATH Van Kampen NG (2007) Stochastic processes in physics and chemistry. Elsevier, AmsterdamMATH
3.
go back to reference Ishimaru A (2017) Electromagnetic wave propagation, radiation, and scattering. Wiley, HobokenCrossRef Ishimaru A (2017) Electromagnetic wave propagation, radiation, and scattering. Wiley, HobokenCrossRef
4.
go back to reference Siegman AE (1986) Lasers. University Science Books, Mill Valley Siegman AE (1986) Lasers. University Science Books, Mill Valley
5.
6.
7.
go back to reference Lin Q, Painter OJ, Agrawal GP (2007) Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt Express 15:16604CrossRef Lin Q, Painter OJ, Agrawal GP (2007) Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt Express 15:16604CrossRef
8.
go back to reference Peleg A, Nguyen QM, Huynh TT (2017) Soliton-like behavior in fast two-pulse collisions in weakly perturbed linear physical systems. Eur Phys J D 71:315CrossRef Peleg A, Nguyen QM, Huynh TT (2017) Soliton-like behavior in fast two-pulse collisions in weakly perturbed linear physical systems. Eur Phys J D 71:315CrossRef
9.
go back to reference Nguyen QM (2021) Collision-induced amplitude dynamics of pulses in linear waveguides with the generic nonlinear loss. Int J Nonlinear Sci Numer Simul, in press Nguyen QM (2021) Collision-induced amplitude dynamics of pulses in linear waveguides with the generic nonlinear loss. Int J Nonlinear Sci Numer Simul, in press
10.
go back to reference Nguyen QM, Huynh TT, Peleg A (2021) Universality of the amplitude shift in fast two-pulse collisions in weakly perturbed linear physical systems. Indian J Phys, in press Nguyen QM, Huynh TT, Peleg A (2021) Universality of the amplitude shift in fast two-pulse collisions in weakly perturbed linear physical systems. Indian J Phys, in press
11.
go back to reference Forghieri F, Tkach RW, Chraplyvy AR (1997) Fiber nonlinearities and their impact on transmission systems (Chapter 8). In: Kaminow IP, Koch TL (eds) Optical fiber telecommunications III. Academic Press, San Diego Forghieri F, Tkach RW, Chraplyvy AR (1997) Fiber nonlinearities and their impact on transmission systems (Chapter 8). In: Kaminow IP, Koch TL (eds) Optical fiber telecommunications III. Academic Press, San Diego
12.
go back to reference Agrawal GP (1997) Fiber-optic communication systems. Wiley, New York Agrawal GP (1997) Fiber-optic communication systems. Wiley, New York
13.
go back to reference Gnauck AH, Tkach RW, Chraplyvy AR, Li T (2008) High-capacity optical transmission systems. J Lightwave Technol 26:1032CrossRef Gnauck AH, Tkach RW, Chraplyvy AR, Li T (2008) High-capacity optical transmission systems. J Lightwave Technol 26:1032CrossRef
14.
go back to reference Mollenauer LF, Grant A, Liu X, Wei X, Xie C, Kang I (2003) Experimental test of dense wavelength-division multiplexing using novel, periodic-group-delay-complemented dispersion compensation and dispersion-managed solitons. Opt Lett 28:2043CrossRef Mollenauer LF, Grant A, Liu X, Wei X, Xie C, Kang I (2003) Experimental test of dense wavelength-division multiplexing using novel, periodic-group-delay-complemented dispersion compensation and dispersion-managed solitons. Opt Lett 28:2043CrossRef
15.
go back to reference Nakazawa M (2000) Solitons for breaking barriers to Terabit/second WDM and OTDM transmission in the next millennium. IEEE J Sel Top Quant Electron 6:1332CrossRef Nakazawa M (2000) Solitons for breaking barriers to Terabit/second WDM and OTDM transmission in the next millennium. IEEE J Sel Top Quant Electron 6:1332CrossRef
16.
go back to reference Dekker R, Usechak N, Först M, Driessen A (2007) Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J Phys D 40:R249CrossRef Dekker R, Usechak N, Först M, Driessen A (2007) Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J Phys D 40:R249CrossRef
17.
go back to reference Borghi M, Castellan C, Signorini S, Trenti A, Pavesi L (2017) Nonlinear silicon photonics. J Opt 19:093002CrossRef Borghi M, Castellan C, Signorini S, Trenti A, Pavesi L (2017) Nonlinear silicon photonics. J Opt 19:093002CrossRef
18.
go back to reference Ehrlich JE, Wu XL, Lee I-YS, Hu Z-Y, Röckel H, Marder SR, Perry JW (1997) Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt Lett 22:1843CrossRef Ehrlich JE, Wu XL, Lee I-YS, Hu Z-Y, Röckel H, Marder SR, Perry JW (1997) Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt Lett 22:1843CrossRef
19.
go back to reference Liang TK, Nunes LR, Sakamoto T, Sasagawa K, Kawanishi T, Tsuchiya M, Priem GRA, Van Thourhout D, Dumon P, Baets R, Tsang HK (2005) Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides. Opt Express 13:7298CrossRef Liang TK, Nunes LR, Sakamoto T, Sasagawa K, Kawanishi T, Tsuchiya M, Priem GRA, Van Thourhout D, Dumon P, Baets R, Tsang HK (2005) Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides. Opt Express 13:7298CrossRef
20.
go back to reference Jones R, Rong H, Liu A, Fang AW, Paniccia MJ, Hak D, Cohen O (2005) Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express 13:519CrossRef Jones R, Rong H, Liu A, Fang AW, Paniccia MJ, Hak D, Cohen O (2005) Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express 13:519CrossRef
21.
go back to reference Liu A, Rong H, Paniccia MJ, Cohen O, Hak D (2004) Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express 12:4261CrossRef Liu A, Rong H, Paniccia MJ, Cohen O, Hak D (2004) Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express 12:4261CrossRef
22.
go back to reference Kivshar YS, Malomed BA (1989) Dynamics of solitons in nearly integrable systems. Rev Mod Phys 61:763CrossRef Kivshar YS, Malomed BA (1989) Dynamics of solitons in nearly integrable systems. Rev Mod Phys 61:763CrossRef
23.
go back to reference Mizrahi V, DeLong KW, Stegeman GI, Saifi MA, Andrejco MJ (1989) Two-photon absorption as a limitation to all-optical switching. Opt Lett 14:1140CrossRef Mizrahi V, DeLong KW, Stegeman GI, Saifi MA, Andrejco MJ (1989) Two-photon absorption as a limitation to all-optical switching. Opt Lett 14:1140CrossRef
24.
go back to reference Aceves AB, Moloney JV (1992) Effect of two-photon absorption on bright spatial soliton switches. Opt Lett 17:1488CrossRef Aceves AB, Moloney JV (1992) Effect of two-photon absorption on bright spatial soliton switches. Opt Lett 17:1488CrossRef
25.
go back to reference Peleg A, Nguyen QM, Chung Y (2010) Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss. Phys Rev A 82:053830CrossRef Peleg A, Nguyen QM, Chung Y (2010) Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss. Phys Rev A 82:053830CrossRef
26.
go back to reference Okawachi Y, Kuzucu O, Foster MA, Salem R, Turner-Foster AC, Biberman A, Ophir N, Bergman K, Lipson M, Gaeta AL (2012) Characterization of nonlinear optical crosstalk in silicon nanowaveguides. IEEE Photon Technol Lett 24:185CrossRef Okawachi Y, Kuzucu O, Foster MA, Salem R, Turner-Foster AC, Biberman A, Ophir N, Bergman K, Lipson M, Gaeta AL (2012) Characterization of nonlinear optical crosstalk in silicon nanowaveguides. IEEE Photon Technol Lett 24:185CrossRef
27.
go back to reference Peleg A, Chakraborty D (2018) Transmission stabilization in soliton-based optical-waveguide systems by frequency-dependent linear gain-loss and the Raman self-frequency shift. Phys Rev A 98:013853CrossRef Peleg A, Chakraborty D (2018) Transmission stabilization in soliton-based optical-waveguide systems by frequency-dependent linear gain-loss and the Raman self-frequency shift. Phys Rev A 98:013853CrossRef
28.
go back to reference Peleg A, Chakraborty D (2020) Radiation dynamics in fast soliton collisions in the presence of cubic loss. Physica D 406:132397MathSciNetCrossRef Peleg A, Chakraborty D (2020) Radiation dynamics in fast soliton collisions in the presence of cubic loss. Physica D 406:132397MathSciNetCrossRef
29.
go back to reference Foster MA, Turner AC, Lipson M, Gaeta AL (2008) Nonlinear optics in photonic nanowires. Opt Express 16:1300CrossRef Foster MA, Turner AC, Lipson M, Gaeta AL (2008) Nonlinear optics in photonic nanowires. Opt Express 16:1300CrossRef
30.
go back to reference Ablowitz MJ, Clarkson PA (1991) Solitons. Nonlinear evolution equations and inverse scattering. Cambridge University Press, CambridgeMATHCrossRef Ablowitz MJ, Clarkson PA (1991) Solitons. Nonlinear evolution equations and inverse scattering. Cambridge University Press, CambridgeMATHCrossRef
31.
go back to reference Osborne AR (2010) Nonlinear ocean waves and the inverse scattering transform. Elsevier, AmsterdamMATH Osborne AR (2010) Nonlinear ocean waves and the inverse scattering transform. Elsevier, AmsterdamMATH
33.
go back to reference Gao XY, Guo YJ, Shan WR (2021) Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili–Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. Wave Random Complex, in press Gao XY, Guo YJ, Shan WR (2021) Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili–Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. Wave Random Complex, in press
34.
go back to reference Gao XY, Guo YJ, Shan WR (2020) Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Phys Lett A 384:126788MathSciNetMATHCrossRef Gao XY, Guo YJ, Shan WR (2020) Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Phys Lett A 384:126788MathSciNetMATHCrossRef
35.
go back to reference Nguyen QM, Huynh TT (2021) Collision-induced amplitude dynamics of fast 2D solitons in saturable nonlinear media with weak nonlinear loss. Nonlinear Dyn 104:4339CrossRef Nguyen QM, Huynh TT (2021) Collision-induced amplitude dynamics of fast 2D solitons in saturable nonlinear media with weak nonlinear loss. Nonlinear Dyn 104:4339CrossRef
36.
go back to reference Huynh TT, Nguyen QM (2021) Fast soliton interactions in cubic-quintic nonlinear media with weak dissipation. Appl Math Model 97:650MathSciNetMATHCrossRef Huynh TT, Nguyen QM (2021) Fast soliton interactions in cubic-quintic nonlinear media with weak dissipation. Appl Math Model 97:650MathSciNetMATHCrossRef
37.
go back to reference McManamon PF, Bos PJ, Escuti MJ, Heikenfeld J, Serati S, Xie H, Watson EA (2009) A review of phased array steering for narrow-band electrooptical systems. Proc IEEE 97:1078CrossRef McManamon PF, Bos PJ, Escuti MJ, Heikenfeld J, Serati S, Xie H, Watson EA (2009) A review of phased array steering for narrow-band electrooptical systems. Proc IEEE 97:1078CrossRef
38.
go back to reference Brandl P, Schidl S, Polzer A, Gaberl W, Zimmermann H (2013) Optical wireless communication with adaptive focus and MEMS-based beam steering. IEEE Photon Technol Lett 25:1428CrossRef Brandl P, Schidl S, Polzer A, Gaberl W, Zimmermann H (2013) Optical wireless communication with adaptive focus and MEMS-based beam steering. IEEE Photon Technol Lett 25:1428CrossRef
39.
go back to reference Oh CW, Cao Z, Tangdiongga E, Koonen T (2016) Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks. Opt Express 24:19211CrossRef Oh CW, Cao Z, Tangdiongga E, Koonen T (2016) Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks. Opt Express 24:19211CrossRef
40.
go back to reference Garanovich IL, Longhi S, Sukhorukov AA, Kivshar YS (2012) Light propagation and localization in modulated photonic lattices and waveguides. Phys Rep 518:1CrossRef Garanovich IL, Longhi S, Sukhorukov AA, Kivshar YS (2012) Light propagation and localization in modulated photonic lattices and waveguides. Phys Rep 518:1CrossRef
41.
go back to reference Kartashov YV, Vysloukh VA, Torner L (2009) Soliton shape and mobility control in optical lattices. Prog Opt 52:63CrossRef Kartashov YV, Vysloukh VA, Torner L (2009) Soliton shape and mobility control in optical lattices. Prog Opt 52:63CrossRef
42.
go back to reference Pertsch T, Zentgraf T, Peschel U, Bräuer A, Lederer F (2002) Beam steering in waveguide arrays. Appl Phys Lett 80:3247CrossRef Pertsch T, Zentgraf T, Peschel U, Bräuer A, Lederer F (2002) Beam steering in waveguide arrays. Appl Phys Lett 80:3247CrossRef
43.
go back to reference Agrawal GP (2019) Nonlinear fiber optics. Academic Press, San DiegoMATH Agrawal GP (2019) Nonlinear fiber optics. Academic Press, San DiegoMATH
44.
45.
go back to reference Peleg A, Chung Y (2012) Cross-talk dynamics of optical solitons in multichannel waveguide systems with a Ginzburg–Landau gain–loss profile. Phys Rev A 85:063828CrossRef Peleg A, Chung Y (2012) Cross-talk dynamics of optical solitons in multichannel waveguide systems with a Ginzburg–Landau gain–loss profile. Phys Rev A 85:063828CrossRef
46.
go back to reference Negres RA, Hales JM, Kobyakov A, Hagan DJ, Van Stryland EW (2002) Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe. IEEE J Quantum Electron 38:1205CrossRef Negres RA, Hales JM, Kobyakov A, Hagan DJ, Van Stryland EW (2002) Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe. IEEE J Quantum Electron 38:1205CrossRef
47.
go back to reference Cirloganu CM, Padilha LA, Fishman DA, Webster S, Hagan DJ, Van Stryland EW (2011) Extremely nondegenerate two-photon absorption in direct-gap semiconductors. Opt Express 19:22951CrossRef Cirloganu CM, Padilha LA, Fishman DA, Webster S, Hagan DJ, Van Stryland EW (2011) Extremely nondegenerate two-photon absorption in direct-gap semiconductors. Opt Express 19:22951CrossRef
48.
go back to reference Rauscher C, Laenen R (1997) Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium. J Appl Phys 81:2818CrossRef Rauscher C, Laenen R (1997) Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium. J Appl Phys 81:2818CrossRef
Metadata
Title
Fast two-beam collisions in a linear optical medium with weak cubic loss in spatial dimension higher than 1
Authors
Avner Peleg
Toan T. Huynh
Quan M. Nguyen
Publication date
01-02-2022
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2022
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-021-10206-3

Other articles of this Issue 1/2022

Journal of Engineering Mathematics 1/2022 Go to the issue

Premium Partners