Skip to main content
Top
Published in: Journal of Electronic Materials 6/2021

26-03-2021 | Original Research Article

Fe-Cu Alloy-Based Flexible Electrodes from Ethaline Ionic Liquid

Authors: Abdulcabbar Yavuz, Necip Fazil Yilmaz, Murat Artan

Published in: Journal of Electronic Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effective implementation of energy storage systems within flexible structures has recently become of particular interest. Here, the fabrication of inexpensive flexible electrodes via a number of straightforward methods formed the motivation for this research. Thin film-based Fe-Cu alloys were cathodically electrodeposited on a graphite substrate. As ionic liquids consist purely of ions (not solvent), they have recently been used in some electrochemical applications. In this study, therefore, Fe-Cu alloy coatings were prepared from an ethaline ionic liquid containing iron and copper salts. The electrochemical behaviour of Fe-Cu alloy films was determined by scanning between − 1.0 V and − 0.3 V in 1 M KOH at various scan rates ranging from 5 mV s−1 to 200 mV s−1. These films were characterised in terms of their structural and morphological properties by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Formation of iron and copper alloy was differentiated depending on applied potential. The supercapacitive ability of Fe-Cu-coated film observed in 1 M KOH electrolyte demonstrated a specific capacitance of 304 F g−1 at a scan rate of 5 mV s-1. The reaction between the alloy and the electrolyte was mainly controlled by a surface-controlled reaction. An asymmetric supercapacitor was constructed with an Fe-Cu-coated graphite negative electrode and a non-woven graphite positive electrode. Four asymmetric supercapacitors were connected in series and used to light up a blue light-emitting diode. This study shows that ethaline ionic liquid is a promising medium for the preparation of alloy-based electrodes in energy storage applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference R. Amirante, E. Cassone, E. Distaso, and P. Tamburrano, Energy Convers. Manag. 132, 372 (2017).CrossRef R. Amirante, E. Cassone, E. Distaso, and P. Tamburrano, Energy Convers. Manag. 132, 372 (2017).CrossRef
4.
go back to reference H. Ibrahim, A. Ilinca, and J. Perron, Renew. Sustain. Energy Rev. 12, 1221 (2008).CrossRef H. Ibrahim, A. Ilinca, and J. Perron, Renew. Sustain. Energy Rev. 12, 1221 (2008).CrossRef
5.
go back to reference K. Zhang, M. Liu, T. Zhang, X. Min, Z. Wang, L. Chai, and Y. Shi, J. Mater. Chem. A 7, 26838 (2019).CrossRef K. Zhang, M. Liu, T. Zhang, X. Min, Z. Wang, L. Chai, and Y. Shi, J. Mater. Chem. A 7, 26838 (2019).CrossRef
6.
7.
8.
go back to reference P. Simon and Y. Gogotsi, in Nanoscience and Technology: a Collection of Reviews from Nature Journals, ed. by P. Rodgers (World Scientific, London, 2010), pp. 320–329 P. Simon and Y. Gogotsi, in Nanoscience and Technology: a Collection of Reviews from Nature Journals, ed. by P. Rodgers (World Scientific, London, 2010), pp. 320–329
9.
10.
go back to reference S. EzhilArasi, R. Ranjithkumar, P. Devendran, M. Krishnakumar, and A. Arivarasan, J. Mater. Sci. Mater. Electron. 31, 7012 (2020).CrossRef S. EzhilArasi, R. Ranjithkumar, P. Devendran, M. Krishnakumar, and A. Arivarasan, J. Mater. Sci. Mater. Electron. 31, 7012 (2020).CrossRef
11.
go back to reference A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, Renew. Sustain. Energy Rev. 101, 123 (2019).CrossRef A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, Renew. Sustain. Energy Rev. 101, 123 (2019).CrossRef
12.
13.
15.
go back to reference J.R. Miller, and P. Simon, Sci. Mag. 321, 651 (2008). J.R. Miller, and P. Simon, Sci. Mag. 321, 651 (2008).
17.
go back to reference C.D. Lokhande, D.P. Dubal, and O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011).CrossRef C.D. Lokhande, D.P. Dubal, and O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011).CrossRef
18.
go back to reference S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, and C.N.R. Rao, J. Chem. Sci. 120, 9 (2008).CrossRef S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, and C.N.R. Rao, J. Chem. Sci. 120, 9 (2008).CrossRef
19.
go back to reference R. Ramya, R. Sivasubramanian, and M.V. Sangaranarayanan, Electrochim. Acta 101, 109 (2013).CrossRef R. Ramya, R. Sivasubramanian, and M.V. Sangaranarayanan, Electrochim. Acta 101, 109 (2013).CrossRef
20.
go back to reference X. Lang, A. Hirata, T. Fujita, and M. Chen, Nat. Nanotechnol. 6, 232 (2011).CrossRef X. Lang, A. Hirata, T. Fujita, and M. Chen, Nat. Nanotechnol. 6, 232 (2011).CrossRef
21.
22.
go back to reference K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, and Q. Wei, Nat. Commun. 8, 1 (2017).CrossRef K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, and Q. Wei, Nat. Commun. 8, 1 (2017).CrossRef
23.
24.
go back to reference A. Yavuz, K. Kaplan, M. Bedir, and J. Dig, Nanomater. Biostruct. 14, 1061 (2019). A. Yavuz, K. Kaplan, M. Bedir, and J. Dig, Nanomater. Biostruct. 14, 1061 (2019).
25.
go back to reference J. Liang, B. Tian, S. Li, C. Jiang, and W. Wu, Adv. Energy Mater. 10, 2000022 (2020).CrossRef J. Liang, B. Tian, S. Li, C. Jiang, and W. Wu, Adv. Energy Mater. 10, 2000022 (2020).CrossRef
26.
go back to reference J. Chen, H. Wang, J. Deng, C. Xu, and Y. Wang, J. Mater. Chem. A 6, 8986 (2018).CrossRef J. Chen, H. Wang, J. Deng, C. Xu, and Y. Wang, J. Mater. Chem. A 6, 8986 (2018).CrossRef
27.
go back to reference A. Yavuz, K. Kaplan, and M. Bedir, J. Electroanal. Chem. 877, 114635 (2020).CrossRef A. Yavuz, K. Kaplan, and M. Bedir, J. Electroanal. Chem. 877, 114635 (2020).CrossRef
28.
go back to reference K. Krishnamoorthy, P. Pazhamalai, and S.J. Kim, Electrochim. Acta 227, 85 (2017).CrossRef K. Krishnamoorthy, P. Pazhamalai, and S.J. Kim, Electrochim. Acta 227, 85 (2017).CrossRef
29.
go back to reference A. Esfandiar, M. Qorbani, I. Shown, and B.O. Dogahe, J. Mater. Chem. A 8, 1920 (2020).CrossRef A. Esfandiar, M. Qorbani, I. Shown, and B.O. Dogahe, J. Mater. Chem. A 8, 1920 (2020).CrossRef
30.
go back to reference P. Sivakumar, M. Jana, M. Kota, M. Gyu, A. Gedanken, and H. Seok, J. Power Sources 402, 147 (2018).CrossRef P. Sivakumar, M. Jana, M. Kota, M. Gyu, A. Gedanken, and H. Seok, J. Power Sources 402, 147 (2018).CrossRef
31.
go back to reference A.U. Rahman, I. Ahmad, and A.S. Malik, J. Energy Storage 29, 101365 (2020).CrossRef A.U. Rahman, I. Ahmad, and A.S. Malik, J. Energy Storage 29, 101365 (2020).CrossRef
33.
35.
go back to reference Y. Shi, X. Wang, J. Luo, and Q. Xie, J. Mater. Sci. Mater. Electron. 30, 3692 (2019).CrossRef Y. Shi, X. Wang, J. Luo, and Q. Xie, J. Mater. Sci. Mater. Electron. 30, 3692 (2019).CrossRef
36.
go back to reference J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, and A.C.S. Appl, Mater. Interfaces 8, 4724 (2016).CrossRef J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, and A.C.S. Appl, Mater. Interfaces 8, 4724 (2016).CrossRef
37.
go back to reference P. Shabeeba, K.K. Thasneema, M.S. Thayyil, M.P. Pillai, and C.V. Niveditha, Mater. Res. Express 4, 85501 (2017).CrossRef P. Shabeeba, K.K. Thasneema, M.S. Thayyil, M.P. Pillai, and C.V. Niveditha, Mater. Res. Express 4, 85501 (2017).CrossRef
38.
go back to reference P. Bhargava, W. Liu, M. Pope, T. Tsui, and A. Yu, Electrochim. Acta 358, 136846 (2020).CrossRef P. Bhargava, W. Liu, M. Pope, T. Tsui, and A. Yu, Electrochim. Acta 358, 136846 (2020).CrossRef
39.
40.
go back to reference R. Bernasconi, M. Zebarjadi, and L. Magagnin, J. Electroanal. Chem. 758, 163 (2015).CrossRef R. Bernasconi, M. Zebarjadi, and L. Magagnin, J. Electroanal. Chem. 758, 163 (2015).CrossRef
41.
42.
go back to reference A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, and K.S. Ryder, Phys. Chem. Chem. Phys. 11, 4269 (2009).CrossRef A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, and K.S. Ryder, Phys. Chem. Chem. Phys. 11, 4269 (2009).CrossRef
43.
go back to reference Y. Xiao, G. Yu, J. Yuan, J. Wang, and Z. Chen, Electrochim. Acta 51, 4218 (2006).CrossRef Y. Xiao, G. Yu, J. Yuan, J. Wang, and Z. Chen, Electrochim. Acta 51, 4218 (2006).CrossRef
44.
45.
46.
go back to reference E.D. Cabanillas, J. Desimoni, G. Punte, and R.C. Mercader, Mater. Sci. Eng. A 276, 133 (2000).CrossRef E.D. Cabanillas, J. Desimoni, G. Punte, and R.C. Mercader, Mater. Sci. Eng. A 276, 133 (2000).CrossRef
47.
go back to reference A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, and A. Memic, Int. J. Nanomed. 7, 6003 (2012).CrossRef A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, and A. Memic, Int. J. Nanomed. 7, 6003 (2012).CrossRef
48.
go back to reference R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, and V. Ravikumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 746 (2014).CrossRef R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, and V. Ravikumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 746 (2014).CrossRef
49.
go back to reference P.M. Kulal, D.P. Dubal, C.D. Lokhande, and V.J. Fulari, J. Alloys Compd. 509, 2567 (2011).CrossRef P.M. Kulal, D.P. Dubal, C.D. Lokhande, and V.J. Fulari, J. Alloys Compd. 509, 2567 (2011).CrossRef
50.
go back to reference D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, and C.D. Lokhande, J. Alloys Compd. 492, 26 (2010).CrossRef D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, and C.D. Lokhande, J. Alloys Compd. 492, 26 (2010).CrossRef
51.
go back to reference B. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, and R. Jose, J. Alloys Compd. 633, 22 (2015).CrossRef B. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, and R. Jose, J. Alloys Compd. 633, 22 (2015).CrossRef
52.
53.
go back to reference Z. Huang, A. Chen, F. Mo, G. Liang, X. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, and B. Dong, Adv. Energy Mater. 10, 2001024 (2020).CrossRef Z. Huang, A. Chen, F. Mo, G. Liang, X. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, and B. Dong, Adv. Energy Mater. 10, 2001024 (2020).CrossRef
54.
go back to reference Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li, G. Liang, D. Wang, Q. Huang, S. Zhang, and S. Chen, ACS Nano 13, 8275 (2019).CrossRef Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li, G. Liang, D. Wang, Q. Huang, S. Zhang, and S. Chen, ACS Nano 13, 8275 (2019).CrossRef
55.
go back to reference V.D. Patake, S.S. Joshi, C.D. Lokhande, and O.-S. Joo, Mater. Chem. Phys. 114, 6 (2009).CrossRef V.D. Patake, S.S. Joshi, C.D. Lokhande, and O.-S. Joo, Mater. Chem. Phys. 114, 6 (2009).CrossRef
56.
go back to reference A. Pendashteh, M.F. Mousavi, and M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013).CrossRef A. Pendashteh, M.F. Mousavi, and M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013).CrossRef
57.
go back to reference S. Shivakumara, T.R. Penki, and N. Munichandraiah, ECS Electrochem. Lett. 2, A60 (2013).CrossRef S. Shivakumara, T.R. Penki, and N. Munichandraiah, ECS Electrochem. Lett. 2, A60 (2013).CrossRef
58.
go back to reference K. Xie, J. Li, Y. Lai, W. Lu, Z. Zhang, Y. Liu, L. Zhou, and H. Huang, Electrochem. Commun. 13, 657 (2011).CrossRef K. Xie, J. Li, Y. Lai, W. Lu, Z. Zhang, Y. Liu, L. Zhou, and H. Huang, Electrochem. Commun. 13, 657 (2011).CrossRef
59.
go back to reference B. Ameri, S.S.H. Davarani, R. Roshani, H.R. Moazami, and A. Tadjarodi, J. Alloys Compd. 695, 114 (2017).CrossRef B. Ameri, S.S.H. Davarani, R. Roshani, H.R. Moazami, and A. Tadjarodi, J. Alloys Compd. 695, 114 (2017).CrossRef
60.
go back to reference D.P. Dubal, G.S. Gund, C.D. Lokhande, and R. Holze, Mater. Res. Bull. 48, 923 (2013).CrossRef D.P. Dubal, G.S. Gund, C.D. Lokhande, and R. Holze, Mater. Res. Bull. 48, 923 (2013).CrossRef
61.
go back to reference S. Shivakumara, T.R. Penki, and N. Munichandraiah, Mater. Lett. 131, 100 (2014).CrossRef S. Shivakumara, T.R. Penki, and N. Munichandraiah, Mater. Lett. 131, 100 (2014).CrossRef
Metadata
Title
Fe-Cu Alloy-Based Flexible Electrodes from Ethaline Ionic Liquid
Authors
Abdulcabbar Yavuz
Necip Fazil Yilmaz
Murat Artan
Publication date
26-03-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 6/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08853-4

Other articles of this Issue 6/2021

Journal of Electronic Materials 6/2021 Go to the issue

Topical Collection: 62nd Electronic Materials Conference 2020

X-ray Topography Characterization of GaN Substrates Used for Power Electronic Devices