Skip to main content
Top
Published in: Metallurgist 7-8/2023

20-12-2023

Features of Corrosive Breakdown of Pipe Steel in Gas Condensate

Authors: A. S. Guzenkova, I. V. Artamonova, S. A. Guzenkov, S. S. Ivanov

Published in: Metallurgist | Issue 7-8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Features of corrosion failure of the inner surface of a pipe extracted from the well of the Denzikul’ field (Uzbekistan) after 256 days of operation are studied. Corrosive environment: gas condensate under a pressure of 6.5–7.5 MPa, temperature of 60°C and density of 826 kg/m3 contained water with a total mineralization of 12.75 g/m3, hydrogen sulfide and carbon dioxide 3.5 and 4.76% (vol.), respectively. A fragment is cut out of the pipe at the inner surface that has through corrosion failure in the form of a triangle, at the base of which, apparently there is a manufacturing macro defect that propagates in the direction of gas condensate movement. Corrosion damage located along the perimeter of the triangle has two characteristic areas: uniform, close to a through hole, and intense corrosion. The width of each of the regions reaches 30 mm in the areas located at the apex of a triangle. The transition from uniform to intense corrosion is accompanied by formation of black protrusions 4–6 mm high and up to 3 mm in diameter, which collapse during transition into the area of general uniform corrosion observed over the rest of the pipe inner surface. The authors attribute features of the nature of corrosion damage observed to interaction of corrosion-active non-metallic inclusions (CANI) with gas condensate and an accelerating effect of hydrogen penetrating into steel on the corrosion process along with appearance and an increase in the level of triaxial tensile stresses in the vicinity of corrosion-active non-metallic inclusions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. G. Rodionova, A. Yu. Zaitsev, O. N. Baklanova, A. V. Golovanov, N. I. Éndel’, É. T Shapovalov, and G. V. Semerin, Contemporary Approaches to Improving Corrosion Resistance and Operating Reliability of Steels for Oil industry Pipelines [in Russian], Metallurgizdat, Moscow (2012). I. G. Rodionova, A. Yu. Zaitsev, O. N. Baklanova, A. V. Golovanov, N. I. Éndel’, É. T Shapovalov, and G. V. Semerin, Contemporary Approaches to Improving Corrosion Resistance and Operating Reliability of Steels for Oil industry Pipelines [in Russian], Metallurgizdat, Moscow (2012).
2.
go back to reference I. G. Rodionova, I. N. Baklanova and A. I. Zaitsev, “Role of non-metallic inclusions in acceleration of local corrosion processes of oil industry pipelines made of carbon low-alloy steels,” Metally, No. 5, 13–18 (2004). I. G. Rodionova, I. N. Baklanova and A. I. Zaitsev, “Role of non-metallic inclusions in acceleration of local corrosion processes of oil industry pipelines made of carbon low-alloy steels,” Metally, No. 5, 13–18 (2004).
3.
go back to reference A. I. Zaitsev, I. G. Rodionova, G. V. Semernin, et al., “New types of unfavourable non-metallic inclusions based upon MgO–Al2O3 and metallurgical factors governing their content within metal. Part I,” Metallurg, No. 2, 50–55 (2011). A. I. Zaitsev, I. G. Rodionova, G. V. Semernin, et al., “New types of unfavourable non-metallic inclusions based upon MgO–Al2O3 and metallurgical factors governing their content within metal. Part I,” Metallurg, No. 2, 50–55 (2011).
4.
go back to reference A. I. Zaitsev, I. G. Rodionova, G. V. Semernin, et al., “New types of unfavourable non-metallic inclusions based upon MgO–Al2O3 and metallurgical factors governing their content within metal. Part II,” Metallurg, No. 3, 28–33 (2011). A. I. Zaitsev, I. G. Rodionova, G. V. Semernin, et al., “New types of unfavourable non-metallic inclusions based upon MgO–Al2O3 and metallurgical factors governing their content within metal. Part II,” Metallurg, No. 3, 28–33 (2011).
5.
go back to reference M. A. Medvedeva, Corrosion and Protection of Oil and Gas Equipment During Oil and Gas Treatment [in Russian], Izd. Neft’ i Gaz RGU Nefti i Gaza im. I. M. Gubkina, Moscow (2005). M. A. Medvedeva, Corrosion and Protection of Oil and Gas Equipment During Oil and Gas Treatment [in Russian], Izd. Neft’ i Gaz RGU Nefti i Gaza im. I. M. Gubkina, Moscow (2005).
6.
go back to reference A. S. Guzenkova, I. V. Artamonova, S. A. Guzenkov, and S. S. Ivanov, “Steel corrosion in hydrogen sulphide containing model media of oil deposits,” Metallurg., No. 5, 36–39 (2021). A. S. Guzenkova, I. V. Artamonova, S. A. Guzenkov, and S. S. Ivanov, “Steel corrosion in hydrogen sulphide containing model media of oil deposits,” Metallurg., No. 5, 36–39 (2021).
7.
go back to reference G. I. Kotel’nikov, D. A. Movenko, A. A. Pavlov, and S. A. Motrenko, “Model for distribution of tensile and compressive stresses within metal around castings containing non-metallic inclusions in aqueous media,” Izv. VUZ Chern. Met., 57, No. 3, 10–16 (2014). G. I. Kotel’nikov, D. A. Movenko, A. A. Pavlov, and S. A. Motrenko, “Model for distribution of tensile and compressive stresses within metal around castings containing non-metallic inclusions in aqueous media,” Izv. VUZ Chern. Met., 57, No. 3, 10–16 (2014).
8.
go back to reference E. S. Ivanov, I. V. Artamonova, S. S. Ivanov, and A. S. Guzenkova, “Low-alloy steel corrosion resistance in natural gas preparation production solutions,” Chemical and Petroleum Engineering, 53, No. 7/8, 547–550 (2017).CrossRef E. S. Ivanov, I. V. Artamonova, S. S. Ivanov, and A. S. Guzenkova, “Low-alloy steel corrosion resistance in natural gas preparation production solutions,” Chemical and Petroleum Engineering, 53, No. 7/8, 547–550 (2017).CrossRef
9.
go back to reference I. Yu. Pyshmintsev, I. V. Kostitsyna, D. A. Manannikov, V. P. Parshukov, M. Yu. Skryl’nik, and V. V. Zav’yalov, “Analysis of corrosion resistance of oil and gas pipelines from results of industrial tests in the Samotlor field,” Neft. Khozyaistvo, No. 3, 99–101 (2012). I. Yu. Pyshmintsev, I. V. Kostitsyna, D. A. Manannikov, V. P. Parshukov, M. Yu. Skryl’nik, and V. V. Zav’yalov, “Analysis of corrosion resistance of oil and gas pipelines from results of industrial tests in the Samotlor field,” Neft. Khozyaistvo, No. 3, 99–101 (2012).
10.
go back to reference A. V. Shreider, I. S. Shparber, and Yu. I. Arcchakov, Effect of Hydrogen on Oil and Chemical Equipment [in Russian], Mashinostroenie, Moscow (1976). A. V. Shreider, I. S. Shparber, and Yu. I. Arcchakov, Effect of Hydrogen on Oil and Chemical Equipment [in Russian], Mashinostroenie, Moscow (1976).
11.
go back to reference F. F. Azhogin, A. V. Sakharov, and S. S. Ivanov, “Question of hydrogen distribution in slow breakdown of high-strength steel,” Fiz. Khim. Mekhan. Materialov, No. 3, 35–38 (1979). F. F. Azhogin, A. V. Sakharov, and S. S. Ivanov, “Question of hydrogen distribution in slow breakdown of high-strength steel,” Fiz. Khim. Mekhan. Materialov, No. 3, 35–38 (1979).
12.
go back to reference V. G. Starchak, “Effect of non-metallic inclusions in steel hydrogen embrittlement,” in: Hydrogenation of Metals and Alloys with Application of Metal Coating and Combatting Hydrogen Embrittlement [in Russian], MDNTI, im F. É. Dzerzhnskovo, Moscow (1973). V. G. Starchak, “Effect of non-metallic inclusions in steel hydrogen embrittlement,” in: Hydrogenation of Metals and Alloys with Application of Metal Coating and Combatting Hydrogen Embrittlement [in Russian], MDNTI, im F. É. Dzerzhnskovo, Moscow (1973).
13.
go back to reference V. Rachinski and M. Smyalovski, “Effect of different factors on iron and steel hydrogen embrittlement,” Zashch. Met., 5, No. 5, 482–490 (1969). V. Rachinski and M. Smyalovski, “Effect of different factors on iron and steel hydrogen embrittlement,” Zashch. Met., 5, No. 5, 482–490 (1969).
14.
go back to reference É. M. Gutman, Metal Mechanochemistry and Corrosion Protection [in Russian], Metallurgiya, Moscow (1974). É. M. Gutman, Metal Mechanochemistry and Corrosion Protection [in Russian], Metallurgiya, Moscow (1974).
Metadata
Title
Features of Corrosive Breakdown of Pipe Steel in Gas Condensate
Authors
A. S. Guzenkova
I. V. Artamonova
S. A. Guzenkov
S. S. Ivanov
Publication date
20-12-2023
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01610-4

Other articles of this Issue 7-8/2023

Metallurgist 7-8/2023 Go to the issue

Premium Partners