Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2017

18-08-2017

Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling

Authors: Shahriar Afkhami, Yuriko Renardy

Published in: Journal of Engineering Mathematics | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ferrofluids are typically suspensions of magnetite nanoparticles, and behave as a homogeneous continuum. The ability of the ferrofluid to respond to an external magnetic field in a controllable manner has made it emerge as a smart material in a variety of applications, such as seals, lubricants, electronics cooling, shock absorbers and adaptive optics. Magnetic nanoparticle suspensions have also gained attraction recently in a range of biomedical applications, such as cell separation, hyperthermia, MRI, drug targeting and cancer diagnosis. In this review, we provide an introduction to mathematical modeling of three problems: motion of superparamagnetic nanoparticles in magnetic drug targeting, the motion of a ferrofluid drop consisting of chemically bound nanoparticles without a carrier fluid, and the breakage of a thin film of a ferrofluid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu X, Kaminski MD, Riffle JS, Chen H, Torno M, Finck MR, Taylor L, Rosengart AJ (2007) Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magn Magn Mater 311:84–87 Liu X, Kaminski MD, Riffle JS, Chen H, Torno M, Finck MR, Taylor L, Rosengart AJ (2007) Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magn Magn Mater 311:84–87
2.
go back to reference Afkhami S, Tyler AJ, Renardy Y, Renardy M, Woodward RC, Pierre TGSt, Riffle JS, (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384 Afkhami S, Tyler AJ, Renardy Y, Renardy M, Woodward RC, Pierre TGSt, Riffle JS, (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384
3.
go back to reference Balasubramaniam S, Kayandan S, Lin Y, Kelly DF, House MJ, Woodward RC, Pierre TGSt, Riffle JS, Davis RM, (2014) Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir 30(6):1580–1587 Balasubramaniam S, Kayandan S, Lin Y, Kelly DF, House MJ, Woodward RC, Pierre TGSt, Riffle JS, Davis RM, (2014) Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir 30(6):1580–1587
4.
go back to reference Dung NT, Long NV, Tam LTT, Nam PH, Tung LD, Phuc NX, Lu LT, Thanh NTK (2017) High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. Nanoscale 9:8952–8961CrossRef Dung NT, Long NV, Tam LTT, Nam PH, Tung LD, Phuc NX, Lu LT, Thanh NTK (2017) High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. Nanoscale 9:8952–8961CrossRef
5.
go back to reference Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRef Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRef
6.
go back to reference Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496ADSCrossRef Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496ADSCrossRef
7.
go back to reference Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172 Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172
8.
go back to reference Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D 42:224003 Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D 42:224003
9.
go back to reference Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24CrossRef Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24CrossRef
10.
go back to reference Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–668ADSCrossRef Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–668ADSCrossRef
11.
go back to reference Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review. medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11CrossRef Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review. medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11CrossRef
13.
go back to reference Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11(4):817–839CrossRef Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11(4):817–839CrossRef
14.
go back to reference Al-Jamal KT, Bai J, Wang JT, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA (2016) Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 16(9):5652–5660ADSCrossRef Al-Jamal KT, Bai J, Wang JT, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA (2016) Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 16(9):5652–5660ADSCrossRef
15.
go back to reference Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14CrossRef Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14CrossRef
16.
go back to reference Radon P, Loewa N, Gutkelch D, Wiekhorst F (2017) Design and characterization of a device to quantify the magnetic drug targeting efficiency of magnetic nanoparticles in a tube flow phantom by magnetic particle spectroscopy. J Magn Magn Mater 427:175–180ADSCrossRef Radon P, Loewa N, Gutkelch D, Wiekhorst F (2017) Design and characterization of a device to quantify the magnetic drug targeting efficiency of magnetic nanoparticles in a tube flow phantom by magnetic particle spectroscopy. J Magn Magn Mater 427:175–180ADSCrossRef
17.
go back to reference Suh YK, Kang S (2011) Motion of paramagnetic particles in a viscous fluid under a uniform magnetic field: benchmark solutions. J Eng Math 69(1):25–58CrossRefMATHMathSciNet Suh YK, Kang S (2011) Motion of paramagnetic particles in a viscous fluid under a uniform magnetic field: benchmark solutions. J Eng Math 69(1):25–58CrossRefMATHMathSciNet
18.
go back to reference Banerjee Y, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13(4):565–577CrossRef Banerjee Y, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13(4):565–577CrossRef
19.
go back to reference van Reenen A, Gao Y, de Jong AM, Hulsen MA, den Toonder JMJ, Prins MWJ (2014) Dynamics of magnetic particles near a surface: model and experiments on field-induced disaggregation. Phys Rev E 89(4):042306ADSCrossRef van Reenen A, Gao Y, de Jong AM, Hulsen MA, den Toonder JMJ, Prins MWJ (2014) Dynamics of magnetic particles near a surface: model and experiments on field-induced disaggregation. Phys Rev E 89(4):042306ADSCrossRef
20.
go back to reference Tsai SSH, Griffiths IM, Stone HA (2011) Microfluidic immunomagnetic multi-target sorting: a model for controlling deflection of paramagnetic beads. Lab Chip 11:2577–2582CrossRef Tsai SSH, Griffiths IM, Stone HA (2011) Microfluidic immunomagnetic multi-target sorting: a model for controlling deflection of paramagnetic beads. Lab Chip 11:2577–2582CrossRef
21.
go back to reference Kang JH, Um E, Diaz A, Driscoll H, Rodas MJ, Domansky K, Watters AL, Super M, Stone HA, Ingber DE (2015) Optimization of pathogen capture in flowing fluids with magnetic nanoparticles. Small 11(42):5657–5666CrossRef Kang JH, Um E, Diaz A, Driscoll H, Rodas MJ, Domansky K, Watters AL, Super M, Stone HA, Ingber DE (2015) Optimization of pathogen capture in flowing fluids with magnetic nanoparticles. Small 11(42):5657–5666CrossRef
22.
go back to reference Mefford OT, Woodward RC, Goff JD, Vadala TP, Pierre TGSt, Dailey JP, Riffle JS, (2007) Field-induced motion of ferrofluids through immiscible viscous media. J Magn Magn Mater 311:347–353 Mefford OT, Woodward RC, Goff JD, Vadala TP, Pierre TGSt, Dailey JP, Riffle JS, (2007) Field-induced motion of ferrofluids through immiscible viscous media. J Magn Magn Mater 311:347–353
23.
go back to reference Mefford OT, Carroll MRJ, Vadala ML, Goff JD, Mejia-Ariza R, Saunders M, Woodward RC, Pierre TGSt, Davis RM, Riffle JS, (2008) Size analysis of PDMS-magnetite nanoparticle complexes: experiment and theory. Chem Mater 20(6):2184–2191 Mefford OT, Carroll MRJ, Vadala ML, Goff JD, Mejia-Ariza R, Saunders M, Woodward RC, Pierre TGSt, Davis RM, Riffle JS, (2008) Size analysis of PDMS-magnetite nanoparticle complexes: experiment and theory. Chem Mater 20(6):2184–2191
24.
go back to reference Mefford OT, Vadala ML, Carroll MRJ, Mejia-Ariza R, Caba Beth L, Timothy Pierre, GSt, Woodward Robert C, Davis Richey M, Riffle JS, (2008) Stability of polydimethylsiloxane-magnetite nanoparticles against flocculation: interparticle interactions of polydisperse materials. Langmuir 24(9):5060–5069 Mefford OT, Vadala ML, Carroll MRJ, Mejia-Ariza R, Caba Beth L, Timothy Pierre, GSt, Woodward Robert C, Davis Richey M, Riffle JS, (2008) Stability of polydimethylsiloxane-magnetite nanoparticles against flocculation: interparticle interactions of polydisperse materials. Langmuir 24(9):5060–5069
25.
go back to reference Rowghanian P, Meinhart CD, Campás O (2016) Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J Fluid Mech 802:245–262ADSCrossRefMathSciNet Rowghanian P, Meinhart CD, Campás O (2016) Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J Fluid Mech 802:245–262ADSCrossRefMathSciNet
26.
go back to reference Afkhami S, Renardy Y, Renardy M, Riffle JS, St. Pierre TG, (2008) Field-induced motion of ferrofluid droplets through immiscible viscous media. J Fluid Mech 610:363–380 Afkhami S, Renardy Y, Renardy M, Riffle JS, St. Pierre TG, (2008) Field-induced motion of ferrofluid droplets through immiscible viscous media. J Fluid Mech 610:363–380
27.
go back to reference Cristini V, Guido S, Alfani A, Blawzdziewicz J, Loewenberg M (2003) Drop breakup and fragment size distribution in shear flow. J Rheol 47:1283–1298ADSCrossRef Cristini V, Guido S, Alfani A, Blawzdziewicz J, Loewenberg M (2003) Drop breakup and fragment size distribution in shear flow. J Rheol 47:1283–1298ADSCrossRef
28.
go back to reference Janssen PJA, Anderson PD (2008) A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops. J Comput Phys 227:8807–8819ADSCrossRefMATH Janssen PJA, Anderson PD (2008) A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops. J Comput Phys 227:8807–8819ADSCrossRefMATH
29.
go back to reference Bazhlekov IB, Anderson PD, Meijer HEH (2006) Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J Colloid Interface Sci 298:369–394ADSCrossRef Bazhlekov IB, Anderson PD, Meijer HEH (2006) Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J Colloid Interface Sci 298:369–394ADSCrossRef
30.
go back to reference Erdmanis J, Kitenbergs G, Perzynski R, Cēbers A (2017) Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J Fluid Mech 821:266–295ADSCrossRefMathSciNet Erdmanis J, Kitenbergs G, Perzynski R, Cēbers A (2017) Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J Fluid Mech 821:266–295ADSCrossRefMathSciNet
31.
go back to reference Lebedev AV, Engel A, Moroznov KI, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. N J Phys 5(57):1–20 Lebedev AV, Engel A, Moroznov KI, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. N J Phys 5(57):1–20
32.
go back to reference Feng JJ, Chen C-Y (2016) Interfacial dynamics in complex fluids. J Fluid Sci Technol 11(4):JFST0021 Feng JJ, Chen C-Y (2016) Interfacial dynamics in complex fluids. J Fluid Sci Technol 11(4):JFST0021
33.
go back to reference Cowley MD, Rosensweig R (1968) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688ADSCrossRefMATH Cowley MD, Rosensweig R (1968) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688ADSCrossRefMATH
34.
go back to reference Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, New York Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, New York
35.
36.
go back to reference Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T (2016) Observing the rosensweig instability of a quantum ferrofluid. Nature 530:194–197ADSCrossRef Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T (2016) Observing the rosensweig instability of a quantum ferrofluid. Nature 530:194–197ADSCrossRef
37.
go back to reference Lavrova O, Polevikov V, Tobiska L (2012) Numerical study of diffusion of interacting particles in a magnetic fluid layer. Numerical modeling. InTech, pp 183–202 Lavrova O, Polevikov V, Tobiska L (2012) Numerical study of diffusion of interacting particles in a magnetic fluid layer. Numerical modeling. InTech, pp 183–202
38.
go back to reference Kang TG, Gao Y, Hulsen MA, den Toonder JMJ, Anderson PD (2013) Direct simulation of the dynamics of two spherical particles actuated magnetically in a viscous fluid. Comput Fluids 86:569–581CrossRefMATHMathSciNet Kang TG, Gao Y, Hulsen MA, den Toonder JMJ, Anderson PD (2013) Direct simulation of the dynamics of two spherical particles actuated magnetically in a viscous fluid. Comput Fluids 86:569–581CrossRefMATHMathSciNet
39.
go back to reference Seric I, Afkhami S, Kondic L (2014) Interfacial instability of thin ferrofluid films under a magnetic field. J Fluid Mech 755:R1 Seric I, Afkhami S, Kondic L (2014) Interfacial instability of thin ferrofluid films under a magnetic field. J Fluid Mech 755:R1
40.
go back to reference Conroy DT, Matar OK (2015) Thin viscous ferrofluid film in a magnetic field. Phys Fluids 27:092102ADSCrossRef Conroy DT, Matar OK (2015) Thin viscous ferrofluid film in a magnetic field. Phys Fluids 27:092102ADSCrossRef
41.
go back to reference Craster RV, Matar OK (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys Fluids 17:032104ADSCrossRefMATH Craster RV, Matar OK (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys Fluids 17:032104ADSCrossRefMATH
42.
go back to reference Yue P, Lee S, Afkhami S, Renardy Y (2012) On the motion of superparamagnetic particles in magnetic drug targeting. Acta Mech 223(3):505–527CrossRefMATHMathSciNet Yue P, Lee S, Afkhami S, Renardy Y (2012) On the motion of superparamagnetic particles in magnetic drug targeting. Acta Mech 223(3):505–527CrossRefMATHMathSciNet
44.
go back to reference House SD, Johnson PC (1986) Diameter and blood flow of skeletal muscle venules during local flow regularization. Am J Physiol Heart Circ Physiol 250:H828–H837 House SD, Johnson PC (1986) Diameter and blood flow of skeletal muscle venules during local flow regularization. Am J Physiol Heart Circ Physiol 250:H828–H837
45.
go back to reference Cohen EGD, van Zon R (2007) Stationary state fluction theorems for driven Langevin systems. C R Phys 8:507–517ADSCrossRef Cohen EGD, van Zon R (2007) Stationary state fluction theorems for driven Langevin systems. C R Phys 8:507–517ADSCrossRef
46.
go back to reference Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–463ADSCrossRef Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–463ADSCrossRef
47.
go back to reference Cherry EM, Eaton JK (2014) A comprehensive model of magnetic particle motion during magnetic drug targeting. Int J Mult Flow 59:173–185CrossRef Cherry EM, Eaton JK (2014) A comprehensive model of magnetic particle motion during magnetic drug targeting. Int J Mult Flow 59:173–185CrossRef
48.
go back to reference Furlani EP (2010) Magnetic biotransport: analysis and applications. Materials 3:2412–2446 Furlani EP (2010) Magnetic biotransport: analysis and applications. Materials 3:2412–2446
49.
go back to reference Cao Q, Han X, Li L (2012) Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J Phys D 45:465001ADSCrossRef Cao Q, Han X, Li L (2012) Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J Phys D 45:465001ADSCrossRef
52.
go back to reference Barnsley LC, Carugo D, Aron M, Stride E (2017) Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Phys Med Biol 62:2333–2360CrossRef Barnsley LC, Carugo D, Aron M, Stride E (2017) Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Phys Med Biol 62:2333–2360CrossRef
53.
go back to reference Sprenger L, Dutz S, Schneider T, Odenbach S, Haefeli UO (2015) Simulations and experimental determination of the online separation of blood components with the help of microfluidic cascading spirals. Biomicrofluidics 9:044110CrossRef Sprenger L, Dutz S, Schneider T, Odenbach S, Haefeli UO (2015) Simulations and experimental determination of the online separation of blood components with the help of microfluidic cascading spirals. Biomicrofluidics 9:044110CrossRef
54.
go back to reference Rukshin I, Mohrenweiser J, Yue P, Afkhami S (2017) Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting. Fluids 2(2):29CrossRef Rukshin I, Mohrenweiser J, Yue P, Afkhami S (2017) Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting. Fluids 2(2):29CrossRef
55.
go back to reference Griffiths IM, Stone HA (2012) Axial dispersion via shear-enhanced diffusion in colloidal suspensions. Europhys Lett 97(5):58001-p1–58001-p6 Griffiths IM, Stone HA (2012) Axial dispersion via shear-enhanced diffusion in colloidal suspensions. Europhys Lett 97(5):58001-p1–58001-p6
56.
go back to reference Lavrova O, Matthies G, Mitkova T, Polevikov V, Tobiska L (2006) Numerical treatment of free surface problems in ferrohydrodynamics. J Phys 18(38):S2657–S2669MATH Lavrova O, Matthies G, Mitkova T, Polevikov V, Tobiska L (2006) Numerical treatment of free surface problems in ferrohydrodynamics. J Phys 18(38):S2657–S2669MATH
57.
go back to reference Lavrova O, Matthies G, Polevikov V, Tobiska L (2004) Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc Appl Math Mech 4:704–705CrossRefMATH Lavrova O, Matthies G, Polevikov V, Tobiska L (2004) Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc Appl Math Mech 4:704–705CrossRefMATH
58.
go back to reference Bashtovoi V, Lavrova OA, Polevikov VK, Tobiska L (2002) Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field. J Magn Magn Mater 252:299–301ADSCrossRef Bashtovoi V, Lavrova OA, Polevikov VK, Tobiska L (2002) Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field. J Magn Magn Mater 252:299–301ADSCrossRef
59.
go back to reference Matthies G, Tobiska L (2005) Numerical simulation of normal-field instability in the static and dynamic case. J Magn Magn Mater 289:346–349ADSCrossRef Matthies G, Tobiska L (2005) Numerical simulation of normal-field instability in the static and dynamic case. J Magn Magn Mater 289:346–349ADSCrossRef
60.
go back to reference Knieling H, Richter R, Rehberg I, Matthies G, Lange A (2007) Growth of surface undulations at the Rosensweig instability. Phys Rev E 76:066301ADSCrossRefMathSciNet Knieling H, Richter R, Rehberg I, Matthies G, Lange A (2007) Growth of surface undulations at the Rosensweig instability. Phys Rev E 76:066301ADSCrossRefMathSciNet
61.
go back to reference Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flow. Ann Rev Fluid Mech 31:567–604ADSCrossRefMathSciNet Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flow. Ann Rev Fluid Mech 31:567–604ADSCrossRefMathSciNet
63.
64.
go back to reference Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341:253ADSCrossRef Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341:253ADSCrossRef
66.
go back to reference Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys Lett 43:649–654CrossRef Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys Lett 43:649–654CrossRef
Metadata
Title
Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling
Authors
Shahriar Afkhami
Yuriko Renardy
Publication date
18-08-2017
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2017
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-017-9931-9

Other articles of this Issue 1/2017

Journal of Engineering Mathematics 1/2017 Go to the issue

Premium Partners